徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

免疫球蛋白G和免疫球蛋白类型转换

快捷方式: 差异相似杰卡德相似系数参考

免疫球蛋白G和免疫球蛋白类型转换之间的区别

免疫球蛋白G vs. 免疫球蛋白类型转换

IgG(免疫球蛋白 G,Immunoglobulin G)是人血清和细胞外液中含量最高的一类免疫球蛋白,约占血清总免疫球蛋白的75%~80%,血清含量9.5~12.5mg/mL,是分子质量最小的一类免疫球蛋白,具有典型的免疫球蛋白单体结构,由脾脏、淋巴结、骨髓和腔上囊(仅禽类)中的浆细胞产生。IgG的亚类中的IgG1、IgG3、IgG4可以穿过胎盘屏障,是唯一一种能够胎盘转运的免疫球蛋白,在新生儿抗感染免疫中起重要作用。. 免疫球蛋白类型转换(又称为种型转换,种型交换,或者类型转换重组(英文简写CSR))是一种可以使得B细胞所生产的抗体从一种类型转变成另一种类型(例如从IgM转换成IgG)的生物学机制。在这一过程中,抗体重链中的恒定区会被改变,但重链的可变区则保持不变。所谓可变区与恒定区,是指针对不同抗原表位特异的抗体之间的变化与不变的部分。由于可变区不变,类型转换并不会影响抗体的抗原特异性。与此相反,抗体对相同的抗原保持亲和力,却得以和不同的效应器分子互相作用。.

之间免疫球蛋白G和免疫球蛋白类型转换相似

免疫球蛋白G和免疫球蛋白类型转换有(在联盟百科)6共同点: B细胞輔助型T細胞IgEIgM抗原表位抗体

B细胞

B细胞(B淋巴球)有時稱之為「朝囊定位細胞」(bursa oriented cells),這是因為它們首次在雞的腔上囊(Bursa of Fabricius)被提及的關係。 在腸道的派亞氏腺體(Peyer's glands)中的淋巴組織,被認為具有與鳥類的Fabricius組織中的鳥囊(avian bursa)同樣的功能。在魚類,它們可能就是那位於腸中的淋巴樣組織,因為口服疫苗時,會刺激魚血液中產生相對應的抗體蛋白。 它是一种在骨髓中成熟的细胞,在體液免疫中產生抗體,起到重要作用。當遇到抗原時,會分化成核比例較大的大淋巴球,叫漿細胞。漿細胞的細胞質中且會出現一些顆粒,這些顆粒容易被甲基藍等天青染料所染色,同時會出現抗體,表現在細胞膜或釋放出去。另一部分B细胞经过抗原激活后并不成为浆细胞,而是成为记忆B细胞。当再次遇到相同抗原时,记忆B细胞能迅速做出反应,大量分化增殖。.

B细胞和免疫球蛋白G · B细胞和免疫球蛋白类型转换 · 查看更多 »

輔助型T細胞

辅助T细胞(T helper cells,Th)是一种T细胞(白细胞的一种),它的表面有抗原受体,可以辨識抗原提呈細胞的MHC - II 类分子呈獻的抗原片段。 一旦受到抗原刺激,Th细胞就增殖和分化成作用性Th细胞(effector Th)和记忆Th(memory Th)细胞。.

免疫球蛋白G和輔助型T細胞 · 免疫球蛋白类型转换和輔助型T細胞 · 查看更多 »

IgE

#重定向 免疫球蛋白E.

IgE和免疫球蛋白G · IgE和免疫球蛋白类型转换 · 查看更多 »

IgM

#重定向 免疫球蛋白M.

IgM和免疫球蛋白G · IgM和免疫球蛋白类型转换 · 查看更多 »

抗原表位

抗原表位(antigenic epitope),简称“表位”,也称为“抗原决定簇”(antigenic determinant),是指抗原表面上决定抗原特异性的化学基团。抗原表位可被免疫系统(尤其是抗体、B细胞或者T细胞)识别。抗体中能识别抗原表位的区域叫做“互补位”或“抗体决定簇”。尽管通常抗原表位是指外来蛋白质等物质的其中一部分,但只要能被自身免疫系统所识别的表位,也被归为抗原表位。 蛋白质抗原的表位根据它们的结构以及与互补位的交互作用,被分为构象表位和线性表位这两种类型。其中构象表位有抗原氨基酸序列中的不连续部分组成,因此互补位和抗原表位的交互作用是基于表面的三位特征和形状,或者是抗原的三级结构。大部分的抗原表位都属于构象表位。与此相反,线性表位是由一段连续的抗原氨基酸序列构成,与抗原的交互作用的基础是其一级结构。.

免疫球蛋白G和抗原表位 · 免疫球蛋白类型转换和抗原表位 · 查看更多 »

抗体

抗體,又稱免疫球蛋白(immunoglobulin,簡稱Ig),是一种主要由浆细胞分泌,被免疫系统用来鉴别与中和外来物质如细菌、病毒等病原体的大型Y形蛋白质,仅被发现存在于脊椎动物的血液等体液中,及其B细胞的细胞膜表面。抗体能通过其可变区唯一识别特定外来物的一个独特特征,该外来目标被称为抗原。蛋白上Y形的其中两个分叉顶端都有一被称为互补位(抗原結合位)的锁状结构,该结构仅针对一种特定的抗原表位。这就像一把钥匙只能开一把锁一般,使得一种抗体仅能和其中一种抗原相结合。 抗体和抗原的结合完全依靠非共价键的相互作用,这些非共价键的相互作用包括氢键、范德华力、电荷作用和疏水作用。这些相互作用可以发生在侧链或者多肽主干之间。正因这种特异性的结合机制,抗体可以“标记”外来微生物以及受感染的细胞,以诱导其他免疫机制对其进行攻击,又或直接中和其目标,例如通过与入侵和生存至关重要的部分相结合而阻断微生物的感染能力等,就像通緝犯上了手銬和腳鐐一樣。针对不同的抗原,抗体的结合可能阻断致病的生化过程,或者召唤巨噬细胞消灭外来物质。而抗体能够与免疫系统的其它部分交互的能力,是通过其Fc区底部所保留的一个糖基化座实现的 。体液免疫系统的主要功能便是制造抗体。抗体也可以与血清中的补体一起直接破壞外来目标。 抗體主要由一種B细胞所分化出来的叫做漿細胞的淋巴細胞所製造。抗体有两种物理形态,一种是从细胞分泌到血浆中的可溶解物形态,另一种是依附于B细胞表面的膜结合形态。抗体与细胞膜结合后所形成的复合体又被称为B细胞感受器(B Cell Receptor,BCR),这种复合体只存在于B细胞的细胞膜表面,是激活B细胞以及后续分化的重要结构。B细胞分化后成为生产抗体的工厂的浆细胞,或者长期存活于体内以便未来能迅速抵抗相同入侵物的记忆B细胞。在大多数情况下,与B细胞进行互动的辅助型T细胞对于B细胞的完全活化是至关重要的,因为辅助型T细胞负责识别抗原,并促使B细胞能分化出能与该抗原相结合的抗体的浆细胞和记忆型B细胞。而可溶性抗体则被释放到血液等体液当中(包括各种分泌物),持续抵抗正在入侵的外来微生物。 抗体是免疫球蛋白超家族中的一种醣蛋白 。它们是血浆中丙种球蛋白的主要构成成分。抗体通常由一些基础单元组成,每一个抗体包括:两个長(大)的重链,以及两个短(小)的轻链。而輕鏈和重鏈之間以雙硫鍵連接。輕鏈和重鏈又分為可變區和恆定區,而不同类型的重链恆定區,将会导致抗体种型的不同。在哺乳类动物身上已知的不同种型的抗体有五种,它们分别扮演不同的角色,并引导免疫系统对所遇到的不同类型外来入侵物产生正确的免疫反應。 尽管所有的抗体大体上都很相似,然而在蛋白质Y形分叉的两个顶端有一小部分可以发生非常丰富的变化。这一高变区上的细微变化可达百万种以上,该位置就是抗原结合位。每一种特定的变化,可以使该抗体和某一个特定的抗原结合。这种极丰富的变化能力,使得免疫系统可以应对同样非常多变的各种抗原。之所以能产生如此丰富多样的抗体,是因为编码抗体基因中,编码抗原结合位(即互补位)的部分可以随机组合及突变。此外,在免疫种型转换的过程中,可以修改重链的类型,从而制造出对相同抗原專一性的不同种型的抗体,使得同种抗体可以用于不同的免疫系统过程中。.

免疫球蛋白G和抗体 · 免疫球蛋白类型转换和抗体 · 查看更多 »

上面的列表回答下列问题

免疫球蛋白G和免疫球蛋白类型转换之间的比较

免疫球蛋白G有29个关系,而免疫球蛋白类型转换有19个。由于它们的共同之处6,杰卡德指数为12.50% = 6 / (29 + 19)。

参考

本文介绍免疫球蛋白G和免疫球蛋白类型转换之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »