我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

克萊姆法則和矩阵

快捷方式: 差异相似杰卡德相似系数参考

克萊姆法則和矩阵之间的区别

克萊姆法則 vs. 矩阵

克萊姆法則(Cramer's rule),又稱為克拉瑪公式,是一個線性代數中的定理,用行列式來計算出線性等式組中的所有解。這個定理因加百列·克萊姆(1704年 - 1752年)的卓越使用而命名。在計算上,並非最有效率之法,所以在很多條等式的情況中沒有廣泛應用。不過,這定理在理論性方面十分有用。. 數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

之间克萊姆法則和矩阵相似

克萊姆法則和矩阵有(在联盟百科)5共同点: 向量單位矩陣矩阵行列式雅可比矩阵

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

克萊姆法則和向量 · 向量和矩阵 · 查看更多 »

單位矩陣

在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.

克萊姆法則和單位矩陣 · 單位矩陣和矩阵 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

克萊姆法則和矩阵 · 矩阵和矩阵 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

克萊姆法則和行列式 · 矩阵和行列式 · 查看更多 »

雅可比矩阵

在向量分析中,雅可比矩阵是函數的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。 它们全部都以数学家卡爾·雅可比命名。.

克萊姆法則和雅可比矩阵 · 矩阵和雅可比矩阵 · 查看更多 »

上面的列表回答下列问题

克萊姆法則和矩阵之间的比较

克萊姆法則有11个关系,而矩阵有194个。由于它们的共同之处5,杰卡德指数为2.44% = 5 / (11 + 194)。

参考

本文介绍克萊姆法則和矩阵之间的关系。要访问该信息提取每篇文章,请访问: