徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

光速和磁場

快捷方式: 差异相似杰卡德相似系数参考

光速和磁場之间的区别

光速 vs. 磁場

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:. 在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

之间光速和磁場相似

光速和磁場有(在联盟百科)22共同点: 安培帶電粒子光子国际单位制粒子物理學真空真空磁导率真空电容率电磁学电磁场無線電波狭义相对论相对论阿尔伯特·爱因斯坦量子力学量子電動力學電磁波集成电路虛粒子标准模型时空

安培

安培,简称安,是国际单位制中电流强度的单位,符号是A。同时它也是国际单位制中七个基本单位之一另外六个是米、开尔文、秒、摩尔、坎德拉和千克。安培是以法国数学家和物理学家安德烈-马里·安培命名的,为了纪念他在经典电磁学方面的贡献。 实际情况中,安培是对单位时间内通过导体横截面的电荷量的度量。1秒内通过横截面的电量为1库仑(个电子的电量)时,电流大小為1安培。 比安培小的電流可以用毫安、微安等單位表示。.

光速和安培 · 安培和磁場 · 查看更多 »

帶電粒子

帶電粒子在物理學是指帶有電荷的粒子。它可以是離子,像是有多餘或欠缺電子的分子,或原子與質子的聯繫。它也可以是電子或質子本身,或是其它的基本粒子,像是正電子。它也可能是沒有電子的原子核,像是α粒子、氦核。中子沒有電荷,所以除非它們是帶正電的原子核的一部分,否則他們不是帶電粒子。電漿是原子核和電子分開的帶電粒子的集合體,但也可以是含有大量帶電粒子的氣體。電漿因為性質和固體、液體和氣體都不同,所以被稱為物質的第四態。 在極區常見的極光也是一種電漿,詳見極光。.

光速和帶電粒子 · 帶電粒子和磁場 · 查看更多 »

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。.

光和光速 · 光和磁場 · 查看更多 »

光子

| mean_lifetime.

光子和光速 · 光子和磁場 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

光速和国际单位制 · 国际单位制和磁場 · 查看更多 »

粒子物理學

粒子物理学是研究组成物质和射线的基本粒子以及它们之间相互作用的一個物理学分支。由于许多基本粒子在大自然的一般条件下不存在或不单独出现,物理学家只有使用粒子加速器在高能相撞的条件下才能生产和研究它们,因此粒子物理学也被称为高能物理学。.

光速和粒子物理學 · 磁場和粒子物理學 · 查看更多 »

真空

真空是一種不存在任何物質的空間狀態,是一種物理現象。在真空中,聲波因為沒有介質而無法傳遞,但電磁波的傳遞不受真空的影響。粗略地說,真空是指在一區域之內的氣壓遠遠小於大氣壓力。真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境裡,只有外太空堪稱最接近真空的空間。 真空下的氣壓為零,有些情形下,氣壓小於大氣壓力,但不為零,此時稱為局部真空,有些也簡稱為真空。 在局部真空的情形下,若其他條件不變,氣壓越低,表示越接近真空。例如一般的吸塵器的吸力可以使氣壓降低20%。也可以以產生更接近真空的條件,像化學、物理及工程常見的腔體,其氣壓可以到大氣壓力的10−12,粒子密度為100粒子/cm3,對應約100粒子/cm3。外太空更接近真空,相當於平均一立方公尺只有幾個氫原子,估計本星系群的密度為 for the Local Group,原子質量單位為,大約一立方公尺有40個原子。根據現代物理學的了解,即使空間中的所有物質都移除了,因為量子涨落、暗能量、經過的γ-射线和宇宙射线、微中子等現象,空間仍然不會是完全的真空。在近代的粒子物理中,將視為是物質的基態。 自古希臘起,真空就是常帶來爭議的哲學議題,但到了十七世紀西方才開始實驗上的研究。埃萬傑利斯塔·托里切利在1643年進行了第一個真空的實驗,而隨著他大氣壓力理論的出現,也開始產生其他的實驗技術。托里切利真空是將一端封閉的長玻璃容器(超過76公分)中裝滿水銀,倒置在裝滿水銀的容器中,長玻璃容器上方的真空即為托里切利真空。 20世紀在電燈泡及真空管問世後,真空變成一個有價值的工業工具,也出現了許多產生真空的技術。载人航天的進展也讓真空對人類及其他生物的影響開始感興趣。.

光速和真空 · 真空和磁場 · 查看更多 »

真空磁导率

真空磁导率(\mu_0),又称磁场常数、磁常數、自由空間磁导率或磁常數是一物理常數,指真空中的磁导率。实验测得这个数值是一个普适的常数,联系着力学和电磁学的测量。真空磁导率是由運動中的帶電粒子或電流產生磁場的公式中產生,也出現在其他真空中產生磁場的公式中,在国际单位制中,其數值為 真空磁导率是一個常數,也可以定義為一個基礎的不變量,是真空中馬克士威方程組中出現的常數之一。在經典力學中,自由空間是電磁理論中的一個概念,對應理論上完美的真空,有時稱為「自由空間真空」或「經典真空」 : 在真空中,磁场常数是磁感应强度和磁场强度的比率: 真空磁导率 \mu_0 和真空电容率 \varepsilon_0 以及光速的关系为c^2\varepsilon_0\mu_0.

光速和真空磁导率 · 真空磁导率和磁場 · 查看更多 »

真空电容率

真空电容率,又称为真空介电系数,或電常數,是一个常见於电磁学的物理常数,符号为\epsilon_0\,\!。在国际单位制裏,真空电容率的數值为: 真空電容率\epsilon_0\,\!可以用公式定義為 其中,c_0\,\!是光波傳播於真空的光速,\mu_0\,\!是真空磁導率。 採用國際單位制,光速的數值定義為 299\ 792\ 458\,\!公尺/秒,真空磁導率的數值定義為 4\pi\times 10^\,\! 亨利/公尺。因此,\epsilon_0\,\!的數值也是個定義值。但是,由於\pi\,\!是個無理數;所以,\epsilon_0\,\!只能近似為 這些數值都可以在2006 CODATA報告裏找到。 真空電容率出現於電位移\mathbf\,\!的定義式: 其中,\mathbf\,\!是電場,\mathbf\,\!是電介質的經典電極化強度。 學術界常遇到一個錯誤的觀點,就是認為真空電容率\epsilon_0\,\!是一個可實現真空的一個物理性質。正確的觀點應該為,\epsilon_0\,\!是一個度量系統常數,是由國際公約發表和定義而產生的結果。\epsilon_0\,\!的定義值是由光波在參考系統的光速或基準(benchmark)光速的衍生而得到的數值。這參考系統稱為自由空間,被用為在其它各種介質的測量結果的比較基線。可實現真空,像外太空、超高真空(ultra high vacuum)、量子色動真空(QCD vacuum)、量子真空(quantum vacuum)等等,它們的物理性質都只是實驗和理論問題,應與\epsilon_0\,\!分題而論。\epsilon_0\,\!的含義和數值是一個度量衡學(metrology)問題,而不是關於可實現真空的問題。為了避免產生混淆,許多標準組織現在都傾向於採用電常數為\epsilon_0\,\!的名稱。.

光速和真空电容率 · 真空电容率和磁場 · 查看更多 »

电磁学

电磁学(英語:electromagnetism)是研究电磁力(電荷粒子之间的一种物理性相互作用) 的物理学的一个分支。电磁力通常表现为电磁场,如電場、磁場和光。电磁力是自然界中四种基本相互作用之一。其它三种基本相互作用是强相互作用、弱相互作用、引力。 電學與磁學領域密切相關。電磁學可以廣義地包含電學和磁學,但狹義來說是探討電與磁彼此之間相互關係的一門學科。 英文单词electromagnetism是两个希腊语词汇ἢλεκτρον(ēlektron,“琥珀”)和μαγνήτης(magnetic源自"magnítis líthos"(μαγνήτης λίθος),意思是“镁石”,一种铁矿)的合成词。研究电磁现象的科学是用电磁力定义的,有时称作洛伦兹力,是既含有電也含有磁的现象。 电磁力在决定日常生活中大多数物体的内部性质中发挥着主要作用。常见物体的电磁力表现在物体中单个分子之间的分子间作用力的结果中。电子被电磁波力学束缚在原子核周围形成原子,而原子是分子的构成单位。相邻原子的电子之间的相互作用产生化學过程,是由电子间的电磁力与动量之间的相互作用决定的。 电磁场有很多种数学描述。在经典电磁学中,电场用欧姆定律中的電勢与电流描述,磁場与电磁感应和磁化强度相关,而馬克士威方程組描述了由电场和磁场自身以及电荷和电流引起的电场和磁场的产生和交替。 电磁学理论意义,特别是基于“媒介”中的传播的性质(磁导率和电容率)确立的光速,推动了1905年阿尔伯特·爱因斯坦的狭义相对论的发展。 虽然电磁力被认为是四大基本作用力之一,在高能量中弱力和电磁力是统一的。在宇宙的历史中的夸克時期,电弱力分割成电磁力和弱力。.

光速和电磁学 · 电磁学和磁場 · 查看更多 »

电磁场

電磁場(electromagnetic field)是由帶電粒子的運動而產生的一種物理場。處於電磁場的帶電粒子會受到電磁場的作用力。電磁場與帶電粒子(電荷或電流)之間的交互作用可以用馬克士威方程組和勞侖茲力定律來描述。 電磁場可以被視為電場和磁場的連結。追根究底,電場是由電荷產生的,磁場是由移動的電荷(電流)產生的。對於耦合的電場和磁場,根據法拉第電磁感應定律,電場會隨著含時磁場而改變;又根據馬克士威-安培方程式,磁場會隨著含時電場而改變。這樣,形成了傳播於空間的電磁波,又稱光波。無線電波或紅外線是較低頻率的電磁波;紫外光或X-射線是較高頻率的電磁波。 電磁場涉及的基本交互作用是電磁交互作用。這是大自然的四個基本作用之一。其它三個是重力相互作用,弱交互作用和強交互作用。電磁場倚靠電磁波傳播於空間。 從經典角度,電磁場可以被視為一種連續平滑的場,以類波動的方式傳播。從量子力學角度,電磁場是量子化的,是由許多個單獨粒子構成的。.

光速和电磁场 · 电磁场和磁場 · 查看更多 »

無線電波

#重定向 无线电波.

光速和無線電波 · 無線電波和磁場 · 查看更多 »

狭义相对论

-- 狭义相对论(英文:Special relativity)是由爱因斯坦、洛仑兹和庞加莱等人创立的,應用在惯性参考系下的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦在1905年完成的《論動體的電動力學》論文中提出了狭义相对论Albert Einstein (1905) "", Annalen der Physik 17: 891; 英文翻譯為George Barker Jeffery和 Wilfrid Perrett翻譯的(1923); 另一版英文翻譯為Megh Nad Saha翻譯的On the Electrodynamics of Moving Bodies(1920).

光速和狭义相对论 · 狭义相对论和磁場 · 查看更多 »

相对论

对论(Theory of relativity)是关于时空和引力的理论,主要由愛因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。.

光速和相对论 · 相对论和磁場 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

光速和阿尔伯特·爱因斯坦 · 磁場和阿尔伯特·爱因斯坦 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

光速和量子力学 · 磁場和量子力学 · 查看更多 »

量子電動力學

在粒子物理學中,量子電動力學(Quantum Electrodynamics,簡稱QED)是電動力學的相對論性量子場論。它在本質上描述了光與物質間的相互作用,而且它還是第一套同時完全符合量子力學及狹義相對論的理論。量子電動力學在數學上描述了所有由帶電荷粒子經交換光子產生的相互作用所引起的現象,同時亦代表了古典電動力學所對應的量子理論,為物質與光的相互作用提供了完整的科學論述。 用術語來說,量子電動力學就是電磁量子的微擾理論。它的其中一個創始人,理查德·費曼把它譽為「物理學的瑰寶」("the jewel of physics"),原因是它能為相關的物理量提供,例如電子的異常磁矩及氫原子能階的蘭姆位移。.

光速和量子電動力學 · 磁場和量子電動力學 · 查看更多 »

電磁波

#重定向 电磁辐射.

光速和電磁波 · 磁場和電磁波 · 查看更多 »

集成电路

集成电路(integrated circuit,縮寫:IC;integrierter Schaltkreis)、或称微电路(microcircuit)、微芯片(microchip)、晶--片/芯--片(chip)在电子学中是一种把电路(主要包括半導體裝置,也包括被动元件等)小型化的方式,並時常制造在半导体晶圓表面上。 前述將電路製造在半导体晶片表面上的積體電路又稱薄膜(thin-film)積體電路。另有一種(thick-film)(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到基板或线路板所构成的小型化电路。 本文是关于单片(monolithic)集成电路,即薄膜積體電路。 從1949年到1957年,維爾納·雅各比(Werner Jacobi)、杰弗里·杜默 (Jeffrey Dummer)、西德尼·達林頓(Sidney Darlington)、樽井康夫(Yasuo Tarui)都開發了原型,但現代積體電路是由傑克·基爾比在1958年發明的。其因此榮獲2000年諾貝爾物理獎,但同時間也發展出近代實用的積體電路的罗伯特·诺伊斯,卻早於1990年就過世。.

光速和集成电路 · 磁場和集成电路 · 查看更多 »

虛粒子

虛粒子(virtual particle),意即虛構粒子、假想粒子,是在量子場論的數學計算中建立的一種解釋性概念,指代用來描述亞原子過程例如撞擊過程中粒子的數學項。但是,虛粒子並不直接出現在計算過程的那些可觀測的輸入輸出量中,那些輸入輸出量只代表實粒子。虛粒子項代表那些所謂離質量殼(off mass shell)的粒子。例如,它們沿時間反演、能量不守恒、以超光速移動,每條看起來都和物理基本原理相悖。虛粒子發生在那些大致可被實輸出量相消的組合項中,因此才産生了前述那些不實的衝突。虛粒子的虛「事件」通常看起來是一個緊接著另一個發生,例如在一次撞擊的時長中,所以他們顯得短命。如果在計算中略去那些被詮釋爲代表虛粒子的數學項,計算結果將變成近似值,有可能較大地偏離完整計算得到的正確而且精確的結果。 量子理論不同於經典理論。區別在於對於亞原子過程的內部機制的計算。經典物理不能處理這種計算。海森堡認爲,在亞原子過程例如碰撞中,到底「實際上」「真正」發生了什麽,是不可直接觀測的,也沒有可用以描述的單一而且物理明確的圖像。量子力學具有這樣的特質:即它可以避開關於內部機制的思考。它把自己限制在那些實際上可觀測可感知的方面。但是,虛粒子則是一種概念化的手段,通過給亞原子過程的內在機制提供假設性的詮釋性圖像,它試圖繞過海森堡的洞察。 虛粒子不必具有和對應實粒子相等的質量。這是因爲它短命而且瞬變,所以不確定性原理允許它不必守恒能量和動量。虛粒子存活得越久,它的特徵就越接近實粒子。 虛粒子出現在許多過程中,包括粒子擴散和卡西米爾效應。在量子場論中,即使是經典力 -- 例如電荷間的電磁吸引力和推斥力 -- 也可被認爲是源于荷間的虛光子交換。 不應將反粒子跟虛粒子或者虛反粒子相混淆。.

光速和虛粒子 · 磁場和虛粒子 · 查看更多 »

标准模型

在粒子物理學裏,標準模型(Standard Model,SM)是描述強力、弱力及電磁力這三種基本力及組成所有物質基本粒子的理論,屬於量子場論的範疇,並與量子力學及狭义相對論相容。到目前為止,幾乎所有對以上三種力的實驗的結果都合乎這套理論的預測。但是標準模型還不是萬有理論,主要是因為還沒有描述引力。.

光速和标准模型 · 标准模型和磁場 · 查看更多 »

时空

时空(时间-空间,时间和空间)是一种基本概念,分别属于物理学、天文学、空间物理学和哲学。并且也是这几个学科最重要的最基本的概念之一。 空间在力学和物理学上,是描述物体以及其运动的位置、形状和方向等抽象概念;而时间则是描述运动之持续性,事件发生之顺序等。时空的特性,主要就是通过物体,其运动以及与其他物体的相互作用之间的各种关系之汇总。空间和时.

光速和时空 · 时空和磁場 · 查看更多 »

上面的列表回答下列问题

光速和磁場之间的比较

光速有220个关系,而磁場有199个。由于它们的共同之处22,杰卡德指数为5.25% = 22 / (220 + 199)。

参考

本文介绍光速和磁場之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »