之间光學望遠鏡和超新星相似
光學望遠鏡和超新星有(在联盟百科)5共同点: 可见光,參宿四,宇宙線,聯星,望远镜。
可见光
可見光(Visible light)是電磁波譜中人眼可以看見(感受得到)的部分。這個範圍中電磁輻射被稱為可見光,或簡單地稱為光。人眼可以感受到的波長範圍一般是落在390到700nm。對應於這些波長的頻率範圍在430–790 THz。但有一些人能够感知到波长大约在380到780nm之间的电磁波。正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。.
參宿四
参宿四(Betelgeuse),也就是拜耳命名法中著名的獵戶座α(α Orionis或α Ori),是全天第九亮星,也是獵戶座第二亮星,只比鄰近的参宿七(獵戶座β)暗淡一點。它有著明顯紅色的半規則變星,視星等在0.2至1.2等之間變化著,是變光幅度最大的一等星。這顆恆星標示著冬季大三角的頂點和冬季六邊形的中心。 在分類上,参宿四是一顆紅超巨星,並且是已知最大和最亮的恆星之一。如果它位於太陽系的中心,它的表面會超越小行星帶,並可能抵達並超越木星的軌道,完全地席捲掉水星、金星、地球和火星。但是,在上個世紀對参宿四的距離估計從180光年至1,300光年不等,因此對其直徑、光度和質量的估計是很難被證實的。目前認為参宿四的距離大約是640光年,平均的絕對星等是-6.05。 而事实上,有关参宿四的质量始终有争议,有的资料显示它的质量不过太阳的14至15倍,但也有的资料认为它的质量达到太阳的18至19倍甚至20倍的,而这种质量的不确定性,正是由于测量距离的不确定性造成的。 在1920年,参宿四是第一顆被測出角直徑的恆星(除太陽之外)。從此以後,研究人員不斷使用不同的技術參數和望遠鏡測量這顆巨星的大小,而且經常產生衝突的結果。目前估計這顆恆星的視直徑在0.043~0.056角秒,作為一個移動的目標,参宿四似乎周期性的改變它的形狀。由於周邊昏暗、光度變化(變星脈動理論)、和角直徑隨著波長改變,這顆恆星仍然充滿了令人費解的謎。参宿四有一些複雜的、不對稱的包層,引起巨大的質量流失,涉及從表面向外排出的龐大冠羽狀氣體,使事情變得更為複雜。甚至有證據指出在它的氣體包層內有伴星環繞著,可能加劇了這顆恆星古怪的行為。 天文學家認為参宿四的年齡只有1,000萬年,但是因為質量大而演化得很快。它被認為是來自獵戶座OB1星協的奔逃星,還包含在獵戶腰帶的参宿一、参宿二、和参宿三等0和B型晚期恆星的集團。以現行恆星演化的晚期階段,預料参宿四在未來的數百萬年將爆炸成為II型超新星,並變成一顆中子星。.
宇宙線
宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.
聯星
聯星是兩顆恆星組成,在各自的軌道上圍繞著它們共同質量中心運轉的恆星系統。有著兩顆或更多恆星的系統稱為多星系統。這種系統,尤其是在距離遙遠時,肉眼看見的經常是單一的點光源,要過其它的觀測方法,才能揭示其本質。過去兩個世紀的研究顯示,一半以上可見的恆星都是多星系統。 雙星(double star)通常被視為聯星的同義詞;然而,雙星應該只是光學雙星。之所以稱為光學雙星,只是因為從地球上觀察它們在天球上的位置,在視線上幾乎是相同的位置。然而,它們的"雙重性"只取決於這光學效應;恆星本身之間的距離是遙遠的,沒有任何共用的物理連結。通過測量視差、自行或徑向速度的差異,可以揭示它們只是光學雙星。 許多著名的光學雙星尚未進行充分與嚴謹的觀測,來確認它們是光學雙星還是有引力束縛在一起的多星系統。 聯星系統在天文物理上非常重要,因為它們的軌道計算允許直接得出系統的質量,而更進一步還能間接估計出半徑和密度。也可以從質光關係(mass-luminosity relationship,MLR)估計出單獨一顆恆星的質量。 有些聯星經常是在以可見光檢測到的,在這種情況下,它們被稱為視覺聯星。許多視覺聯星有長達數百年或數千年的軌道週期,因此還不是很了解它們的軌道。它們也可能通過其他的技術,例如光譜學(聯星光譜)或天體測量學來檢測。如果聯星的軌道平面正巧在我們的視線方向上,它與伴星會發生互相食與凌的現象;這樣的一對聯星會被稱為食聯星,或因為它們是經由光度變化被檢測出來的,而被稱為光度計聯星。 如果聯星系統中的成員非常接近,將會因為引力而相互扭曲它們的大氣層。在這樣的情況下,這些接近的聯星系統可以交換質量,可能會帶來它們在恆星演化時,單獨的恆星不能達到的階段。這些聯星的例子有大陵五、天狼星、天鵝座X-1(這是眾所皆知的黑洞)。也有許多聯星是行星狀星雲的中心恆星,和新星與Ia型超新星的祖恆星。.
望远镜
望遠鏡是一種可以透過遙控方式收集電磁波(例如可見光)以協助觀察遠方物體的工具。已知能實用的第一架望遠鏡是在17世紀初期在荷蘭使用玻璃透鏡發明的。這項發明現在被應用在陸地和天文學。 在第一架望遠鏡被製造出來幾十年內,用鏡子收集和聚焦光線的反射望遠鏡就被製造出來。在20世紀,許多新型式的望遠鏡被發明,包括1930年代的電波望遠鏡和1960年代的紅外線望遠鏡。望遠鏡這個名詞現在是泛指能夠偵測不同區域的電磁頻譜的各種儀器,在某些情況下還包括其他類型的探測儀器。 英文的「telescope」(來自希臘的τῆλε,tele "far"和 σκοπεῖν,skopein "to look or see";τηλεσκόπος,teleskopos "far-seeing")。這個字是希臘數學家乔瓦尼·德米西亚尼在1611年於伽利略出席的意大利猞猁之眼国家科学院的一場餐會中,推銷他的儀器時提出的。在《星際信使》這本書中,伽利略使用的字是"perspicillum"。.
上面的列表回答下列问题
- 什么光學望遠鏡和超新星的共同点。
- 什么是光學望遠鏡和超新星之间的相似性
光學望遠鏡和超新星之间的比较
光學望遠鏡有53个关系,而超新星有223个。由于它们的共同之处5,杰卡德指数为1.81% = 5 / (53 + 223)。
参考
本文介绍光學望遠鏡和超新星之间的关系。要访问该信息提取每篇文章,请访问: