我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

光和雙縫實驗

快捷方式: 差异相似杰卡德相似系数参考

光和雙縫實驗之间的区别

光 vs. 雙縫實驗

光通常指的是人類眼睛可以見的電磁波(可見光),視知覺就是對於可見光的知覺。可見光只是電磁波譜上的某一段頻譜,一般是定義為波長介於400至700奈(纳)米(nm)之間的電磁波,也就是波長比紫外線長,比紅外線短的電磁波。有些資料來源定義的可見光的波長範圍也有不同,較窄的有介於420至680nm,較寬的有介於380至800nm。 而有些非可見光也可以被稱為光,如紫外光、紅外光、x光。 光既是一种高频的电磁波,又是一種由称為光子的基本粒子組成的粒子流。因此光同时具有粒子性与波动性,或者说光具有“波粒二象性”。. 在量子力學裏,雙縫實驗(double-slit experiment)是一種演示光子或電子等等微觀物體的波動性與粒子性的實驗。雙縫實驗是一種「雙路徑實驗」。在這種更廣義的實驗裏,微觀物體可以同時通過兩條路徑或通過其中任意一條路徑,從初始點抵達最終點。這兩條路徑的程差促使描述微觀物體物理行為的量子態發生相移,因此產生干涉現象。另一種常見的雙路徑實驗是马赫-曾德尔干涉仪實驗。 雙縫實驗的基本儀器設置很簡單,如右圖所示,將像激光一類的相干光束照射於一塊刻有兩條狹縫的不透明板,通過狹縫的光束,會抵達照相膠片或某種探測屏,從記錄於照相膠片或某種探測屏的輻照度數據,可以分析光的物理性質。光的波動性使得通過兩條狹縫的光束相互干涉,形成了顯示於探測屏的明亮條紋和暗淡條紋相間的圖樣,明亮條紋是相長干涉區域,暗淡條紋是相消干涉區域,這就是雙縫實驗著名的干涉圖樣。 在古典力學裏,雙縫實驗又稱為「楊氏雙縫實驗」,或「楊氏實驗」、「楊氏雙狹縫干涉實驗」,專門演示光波的干涉行為,是因物理學者托馬斯·楊而命名。假若,光束是以粒子的形式從光源移動至探測屏,抵達探測屏任意位置的粒子數目,應該等於之前通過左狹縫的粒子數量與之前通過右狹縫的粒子數量的總和。根據定域性原理(principle of locality),關閉左狹縫不應該影響粒子通過右狹縫的行為,反之亦然,因此,在探測屏的任意位置,兩條狹縫都不關閉的輻照度應該等於只關閉左狹縫後的輻照度與只關閉右狹縫後的輻照度的總和。但是,當兩條狹縫都不關閉時,結果並不是這樣,探測屏的某些區域會比較明亮,某些區域會比較暗淡,這種圖樣只能用光波動說的相長干涉和相消干涉來解釋,而不是用光微粒說的簡單數量相加法。 雙縫實驗也可以用來檢試像中子、原子等等微觀物體的物理行為,雖然使用的儀器不同,仍舊會得到類似的結果。每一個單獨微觀物體都離散地撞擊到探測屏,撞擊位置無法被預測,演示出整個過程的機率性,累積很多撞擊事件後,總體又顯示出干涉圖樣,演示微觀物體的波動性。 2013年,一個檢試分子物理行為的雙縫實驗,成功演示出含有810個原子、質量約為10000amu的分子也具有波動性。 理查德·費曼在著作《費曼物理學講義》裏表示,雙縫實驗所展示出的量子現象不可能、絕對不可能以任何古典方式來解釋,它包含了量子力學的核心思想。事實上,它包含了量子力學唯一的奧秘。透過雙縫實驗,可以觀察到量子世界的奧秘。.

之间光和雙縫實驗相似

光和雙縫實驗有(在联盟百科)10共同点: 原子奧古斯丁·菲涅耳干涉 (物理学)光子光电效应繞射阿尔伯特·爱因斯坦量子力学波长激光

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

光和原子 · 原子和雙縫實驗 · 查看更多 »

奧古斯丁·菲涅耳

#重定向 奥古斯丁·菲涅耳.

光和奧古斯丁·菲涅耳 · 奧古斯丁·菲涅耳和雙縫實驗 · 查看更多 »

干涉 (物理学)

干涉(interference)在物理学中,指的是兩列或两列以上的波在空间中重疊時发生叠加,从而形成新波形的現象。 例如采用分束器将一束单色光束分成两束后,再让它们在空间中的某个区域内重叠,将会发现在重叠区域内的光强并不是均匀分布的:其明暗程度随其在空间中位置的不同而变化,最亮的地方超过了原先两束光的光强之和,而最暗的地方光强有可能为零,这种光强的重新分布被称作“干涉条纹”。在历史上,干涉现象及其相关实验是证明光的波动性的重要依据 ,但光的这种干涉性质直到十九世纪初才逐渐被人们发现,主要原因是相干光源的不易获得。 为了获得可以观测到可见光干涉的相干光源,人们发明制造了各种产生相干光的光学器件以及干涉仪,这些干涉仪在当时都具有非常高的测量精度:阿尔伯特·迈克耳孙就借助迈克耳孙干涉仪完成了著名的迈克耳孙-莫雷实验,得到了以太风观测的零结果。迈克耳孙也利用此干涉仪測得的精確長度,並因此獲得了1907年的諾貝爾物理學獎。而在二十世纪六十年代之后,激光这一高强度相干光源的发明使光学干涉测量技术得到了前所未有的广泛应用,在各种精密测量中都能见到激光干涉仪的身影。现在人们知道,两束电磁波的干涉是彼此振动的电场强度矢量叠加的结果,而由于光的波粒二象性,光的干涉也是光子自身的几率幅叠加的结果。.

光和干涉 (物理学) · 干涉 (物理学)和雙縫實驗 · 查看更多 »

光子

| mean_lifetime.

光和光子 · 光子和雙縫實驗 · 查看更多 »

光电效应

光电效应(Photoelectric Effect)是指光束照射物体时會使其發射出電子的物理效應。發射出來的電子稱為「光電子」。 1887年,德國物理學者海因里希·赫茲發現,紫外線照射到金屬電極上,可以幫助產生電火花。(On an effect of ultra-violet light upon the electric discharge)1905年,阿爾伯特·愛因斯坦發表論文《关于光产生和转变的一个启发性观点》,給出了光電效應實驗數據的理论解釋。愛因斯坦主張,光的能量并非均匀分布,而是負載於離散的光量子(光子),而這光子的能量和其所組成的光的頻率有關。這个突破性的理論不但能够解释光电效应,也推动了量子力學的诞生。由於「他對理論物理學的成就,特別是光電效應定律的發現」,愛因斯坦獲頒1921年諾貝爾物理學獎。 在研究光電效應的过程中,物理學者对光子的量子性質有了更加深入的了解,这對波粒二象性概念的提出有重大影響。除了光電效應以外,在其它現象裏,光子束也會影響電子的運動,包括光電導效應、光伏效應、光電化學效應(photoelectrochemical effect)。 根據波粒二象性,光電效應也可以用波動概念來分析,完全不需用到光子概念。威利斯·蘭姆與馬蘭·斯考立(Marlan Scully)於1969年使用半經典方法證明光電效應,這方法將電子的行為量子化,又將光視為純粹經典電磁波,完全不考慮光是由光子組成的概念。.

光和光电效应 · 光电效应和雙縫實驗 · 查看更多 »

繞射

#重定向 衍射.

光和繞射 · 繞射和雙縫實驗 · 查看更多 »

阿尔伯特·爱因斯坦

阿尔伯特·爱因斯坦,或譯亞伯特·爱因斯坦(Albert Einstein,),猶太裔理論物理學家,创立了現代物理學的兩大支柱之一的相对论,也是質能等價公式()的發現者。他在科學哲學領域頗具影響力。因為“對理論物理的貢獻,特別是發現了光電效應的原理”,他榮獲1921年諾貝爾物理學獎。這發現為量子理論的建立踏出了關鍵性的一步。 愛因斯坦在職業生涯早期就發覺經典力學與電磁場無法相互共存,因而發展出狹義相對論。他又發現,相對論原理可以延伸至重力場的建模。從研究出來的一些重力理論,他於1915年發表了廣義相對論。他持續研究統計力學與量子理論,導致他給出粒子論與對於分子運動的解釋。在1917年,愛因斯坦應用廣義相對論來建立大尺度結構宇宙的模型。 阿道夫·希特勒於1933年開始掌權成為德國總理之時,愛因斯坦正在走訪美國。由於愛因斯坦是猶太裔人,所以儘管身為普魯士科學院教授,亦沒有返回德國。1940年,他定居美國,隨後成為美國公民。在第二次世界大戰前夕,他在一封寫給當時美國總統富蘭克林·羅斯福的信裏署名,信內提到德國可能發展出一種新式且深具威力的炸彈,因此建議美國也盡早進行相關研究,美國因此開啟了曼哈頓計劃。愛因斯坦支持增強同盟國的武力,但譴責將當時新發現的核裂变用於武器用途的想法,後來愛因斯坦與英國哲學家伯特蘭·羅素共同簽署《羅素—愛因斯坦宣言》,強調核武器的危險性。 愛因斯坦總共發表了300多篇科學論文和150篇非科學作品。愛因斯坦被誉为是“現代物理学之父”及20世紀世界最重要科學家之一。他卓越和原創性的科學成就使得“愛因斯坦”一詞成為“天才”的同義詞。.

光和阿尔伯特·爱因斯坦 · 阿尔伯特·爱因斯坦和雙縫實驗 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

光和量子力学 · 量子力学和雙縫實驗 · 查看更多 »

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

光和波长 · 波长和雙縫實驗 · 查看更多 »

激光

雷射(LASER),中國大陸譯成激--光,在港澳台又音譯为镭--射或雷--射,是“通过受激辐射产生的光放大”(Light Amplification by Stimulated Emission of Radiation)的缩写,指通过刺激原子导致电子跃迁释放辐射能量而产生的具有同調性的增强光子束,其特点包括发散度极小,亮度(功率)可以达到很高等。產生激光需要“激發來源”,“增益介質”,“共振结构”這三個要素。.

光和激光 · 激光和雙縫實驗 · 查看更多 »

上面的列表回答下列问题

光和雙縫實驗之间的比较

光有101个关系,而雙縫實驗有46个。由于它们的共同之处10,杰卡德指数为6.80% = 10 / (101 + 46)。

参考

本文介绍光和雙縫實驗之间的关系。要访问该信息提取每篇文章,请访问: