我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

先子星和黑洞

快捷方式: 差异相似杰卡德相似系数参考

先子星和黑洞之间的区别

先子星 vs. 黑洞

先子星(Preon stars)在理論上是由先子構成的緻密星,這是在理論上組成夸克和輕子的一種次原子粒子。先子星的密度預測是介於中子星和黑洞之間-超過1020 克/立方公分,是極為驚人的。一顆質量與地球相似的先子星,直徑只有網球直徑大小。 這種天體原則上可以藉由經過重力透鏡觀測到的γ射線偵測出來。先子星的存在,或許可以解釋暗物質假說所造成的迷惑。 雖然很難解釋如此輕的物質如何形成如此緻密的天體,但先子星可能誕生於超新星爆发或大爆炸。. 黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

之间先子星和黑洞相似

先子星和黑洞有(在联盟百科)7共同点: 大爆炸夸克星中子星质量超新星致密星暗物质

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

先子星和大爆炸 · 大爆炸和黑洞 · 查看更多 »

夸克星

夸克星(Quark star)由奇异物質組成,是一種理論假設可能存在的引力緻密星體,需要更多的觀測數據及關鍵遺失環結理論推導來佐證其真實性。 實驗驗證方面,關鍵的奇異物質理論至今還是假說,至2013年五月為止,沒有任何可能的夸克星類型被證實或理論可以完全自洽,基礎成分「H雙重子」亦未被尋獲,最後一組對「H雙重子」進行搜尋實驗的是日本KEK(高能加速器研究機構)與日本原子能研究開發機構(JAEA)的合作項目J-PARC,目前尚未有結論。 2013年6月17日,北京質譜儀BES III與日本KEK的Belle團隊在研究疑似粲夸克偶素(Charmonium)的Y(4260)時,分別獨立發現Zc(3900),實驗報告於美國物理通訊上發表,Zc(3900)的夸克態可能是ccud或是介子分子混雜態(hadron molecule),是目前跡象最明確有可能被正式認定的第一個四夸克態粒子(雙夸克反雙夸克態)。Zc(3900)如果確認成立,其意義十分重大,將正式確立多夸克態物理的成立,確認一整門新物理學的出現,多夸克態一旦成立,則夸克水平的星體均可能成立,但不見得是奇異夸克星,也有可能是混雜態夸克星或是孤子星產生機率更高,這對近代天體物理發展而言是一項很大的突破,一整個族系的多夸克態星體均有可能被列入天體物理的研究範圍內。 對夸克星模型產生矛盾的現有物理實驗當中,在2013年1月,質子大小再度被確認為0.84087飛米,以μ-氫原子(Hydrogen muon)作為測量基準,置信度為7σ,遠比使用氫原子精確許多,推翻百年以來推算的大小0.8768飛米,完成驗證程序,正式為物理學界承認(2010年,德國(MPQ)首度測量μ-氫原子所得數據大約為0.8418飛米,其後被物理學界稱為質子大小謎團)。該數值導致量子電動力學當中的一些物理常量可能必須修改,例如「里德伯常量」。質子的夸克態為uud,質子大小修正幅度達4%,這意味過去推導的「H雙重子」uuddss物態方程,在數值計算上幾乎是全面錯誤的,短距力的效應在夸克星模型當中被低估許多。由此可以確信的是現有的夸克星模型全部都是需要修正的,這包含了夸克星半徑的推算、引力緻密程度及內部能階所能產生各類衰變粒子所造成的星體穩定性問題,2013年以前推導的夸克星模型沒有任何一個是正確的,引用新數值重新計算的工作還在進行中,尚未有相關的新論文出現。 理論發展方面,2013年3月中,CERN宣布了希格斯玻色子的能階大約在125.3-126.0GeV之間,如果CERN以外的第三方對照組實驗的數據同樣驗證此一數值(現代科學程序上要求CERN以外的機構重覆檢驗正確性,至少要有CERN以外的一個單位或多個單位進行重覆證實,CERN的發現並非最終結論),則此一能階則表示夸克星核心將會頻繁地形成希格斯玻色子及比較強烈的真空極化效應,甚至會形成穩定的希格斯玻色子物質團,夸克星的組成將不再是單純的奇異物質團,模型還必須考慮到與希格斯玻色子的交互作用,舊有推導的夸克星模型則幾乎全面都存在錯誤。考慮到夸克星是最可能進一步坍縮成更高密度的引力緻密星體,核心當中含有高密度的希格斯玻色子應當是一個正確的物理推論結果,提供了完美解釋了進一步坍縮的成因,過往的夸克星模型通常避開此一量子效應,在希格斯玻色子能階確認以後,夸克星模型無可避免地需要進行全面修正。 在質量生成貢獻度方面,希格斯玻色子一般只貢獻大約10%以下,90%以上是由夸克與膠子之間的力所賦予,質子質量當中,夸克僅佔5%,膠子不具質量,其餘質量貢獻為夸克與膠子之間的交互作用所貢獻,由於H雙重子尚未尋獲,無法得知其實際質量,在夸克星的密度及強引力參數下,夸克與膠子之間的交互作用對質量的貢獻比例是否會發生重大改變,成為夸克星模型當中的關鍵要素,對於其是否進一步坍縮或是維持長期結構穩定,以及星體總質量的生成因素,有關鍵性的影響,同時也全面影響夸克星的演化結構,舊有的理論物態方程均未考慮到此一因素,明顯需要進行大幅度修正。 希格斯玻色子的發現,將會使得夸克星研究成為新物理學及「巨觀宇宙結構研究」的關鍵性角色,夸克星引力及質量生成機制涉及使用廣義相對論的部份必須幾乎全面修改,物態轉換過程的進一步研究,對於證明廣義相對論是一個錯誤的物理理論有很大的幫助,目前夸克星機制的矛盾,大多數都來自於使用廣義相對論假設,假定廣義相對論存在錯誤的假設,並且採用新的量子引力延展理論,例如或是純量不變量(Scalar invariant)系列約十餘種延展理論,在高能階區域進行修正,對於尋找正確的夸克星模型及證明「經典黑洞理論」是錯誤的天體物理理論會有很大的幫助,而正確的夸克星模型則對暗物質、巨引源、超級星系長城及巨觀宇宙結構有決定性的影響。.

先子星和夸克星 · 夸克星和黑洞 · 查看更多 »

中子星

中子星(neutron star),是恒星演化到末期,經由引力坍縮發生超新星爆炸之後,可能成為的少數終點之一。恆星在核心的氫、氦、碳等元素於核聚变反應中耗盡,当它们最终轉變成鐵元素時便無法从核聚变中获得能量。失去熱輻射壓力支撐的外圍物質受重力牽引會急速向核心墜落,有可能导致外壳的動能轉化為熱能向外爆發產生超新星爆炸,或者根据恒星质量的不同,恒星的内部区域被压缩成白矮星、中子星或黑洞。白矮星被压缩成中子星的過程中恒星遭受劇烈的壓縮使其組成物質中的電子併入質子轉化成中子,直徑大約只有十餘公里,但上面一立方厘米的物質便可重達十億噸,且旋轉速度極快。由於其磁軸和自轉軸並不重合,磁場旋轉時所產生的無線電波等各种辐射可能會以一明一滅的方式傳到地球,有如人眨眼,此時稱作脈衝星。 一顆典型的中子星質量介於太陽質量的1.35到2.1倍,半徑則在10至20公里之間(質量越大半徑收縮得越小),也就是太陽半徑的30,000至70,000分之一。因此,中子星的密度在每立方公分8×1013克至2×1015克間,此密度大約是原子核的密度。 緻密恆星的質量低於1.44倍太陽質量,則可能是白矮星,但质量大於奧本海默-沃爾可夫極限(3.2倍太陽質量)的恆星会继续發生引力坍縮,則無可避免的將產生黑洞。 由於中子星保留母恆星大部分的角動量,但半徑只是母恆星極微小的量,轉動慣量的減少導致轉速迅速的增加,產生非常高的自轉速率,周期從毫秒脈衝星的700分之一秒到30秒都有。中子星的高密度也使它有強大的表面重力,強度是地球的2×1011到3×1012倍。逃逸速度是將物體由重力場移動至無窮遠的距離所需要的速度,是測量重力的一項指標。一顆中子星的逃逸速度大約在10,000至150,000公里/秒之間,也就是可以達到光速的一半。換言之,物體落至中子星表面的速度也將達到150,000公里/秒。更具體的說明,如果一個普通體重(70公斤)的人遇到中子星,他撞擊到中子星表面的能量將相當於二億噸TNT當量的威力(四倍於全球最巨大的核彈大沙皇的威力)。.

中子星和先子星 · 中子星和黑洞 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

先子星和质量 · 质量和黑洞 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

先子星和超新星 · 超新星和黑洞 · 查看更多 »

致密星

致密星是白矮星、中子星、奇特星、黑洞等一类致密天体的总称,它们与正常星的主要区别是不再有核燃料进行聚变反应,热压力不足以与自身的引力保持平衡,因而塌缩成尺度非常小、密度非常大的天体。致密星通常是恒星演化末期的终结形态,恒星演化为何种致密星主要取决于恒星的质量。一般来說,质量在1倍至6倍太阳质量的恒星最终演化成白矮星,并伴随有质量损失,其外壳向外抛出,形成行星状星云。质量为3至8倍太阳质量的恒星演化成中子星,更大质量的恒星则坍缩成黑洞。.

先子星和致密星 · 致密星和黑洞 · 查看更多 »

暗物质

在宇宙学中,暗物质(Dark matter),是指無法通過电磁波的觀測進行研究,也就是不與电磁力產生作用的物质。人们目前只能透过重力产生的效应得知,而且已經發现宇宙中有大量暗物质的存在。 现代天文学經由引力透镜、宇宙中大尺度结构的形成、微波背景辐射等方法和理论来探测暗物质。而根据ΛCDM模型,由普朗克卫星探测的数据得到:整个宇宙的构成中,常規物質(即重子物質)占4.9%,而暗物质則占26.8%,还有68.3%是暗能量(质能等价)。暗物质的存在可以解决大爆炸理论中的不自洽性(inconsistency),对结构形成也非常关键。暗物质很有可能是一种(或几种)粒子物理标准模型以外的新粒子所構成。对暗物质(和暗能量)的研究是现代宇宙学和粒子物理的重要课题。 2015年11月,NASA噴射推進實驗室的科學家蓋瑞‧普里茲奧(Gary Prézeau)以ΛCDM模型模擬銀河系內暗物質流過地球與木星等行星的情形,發現這會使該暗物質流的密度明顯上升(地球:10^7倍、木星:10^8倍),並呈現毛髮狀的向外輻射分佈結構。.

先子星和暗物质 · 暗物质和黑洞 · 查看更多 »

上面的列表回答下列问题

先子星和黑洞之间的比较

先子星有20个关系,而黑洞有90个。由于它们的共同之处7,杰卡德指数为6.36% = 7 / (20 + 90)。

参考

本文介绍先子星和黑洞之间的关系。要访问该信息提取每篇文章,请访问: