之间元数学和数理逻辑相似
元数学和数理逻辑有(在联盟百科)7共同点: 伯特兰·罗素,哥德尔不完备定理,证明论,阿隆佐·邱奇,概念文字,模型论,戈特洛布·弗雷格。
伯特兰·罗素
伯特兰·亚瑟·威廉·罗素,第三代羅素伯爵(Bertrand Arthur William Russell, 3rd Earl Russell,),OM,FRS,英国哲学家、数学家和逻辑学家,致力于哲学的大众化、普及化。 在數學哲學上採取弗雷格的邏輯主義立場,認為數學可以化約到邏輯,哲學可以像邏輯一樣形式系統化,主張逻辑原子論。 1950年,罗素获得诺贝尔文学奖,以表彰其“西歐思想,言論自由最勇敢的君子,卓越的活力,勇氣,智慧與感受性,代表了諾貝爾獎的原意和精神”。 1921年罗素曾於中国讲学,对中国学术界有相当影响。.
哥德尔不完备定理
在数理逻辑中,哥德尔不完备定理是库尔特·哥德尔于1931年证明并发表的两条定理。简单地说,第一条定理指出: 这是形式逻辑中的定理,容易被错误表述。有许多命题听起来很像是哥德尔不完备定理,但事实上并不是。具体实例见对哥德尔定理的误解 把第一条定理的证明过程在体系内部形式化后,哥德尔证明了第二条定理。该定理指出: 这个结果破坏了数学中一个称为希尔伯特计划的哲学企图。大卫·希尔伯特提出,像实分析那样较为复杂的体系的相容性,可以用较为简单的体系中的手段来证明。最终,全部数学的相容性都可以归结为基本算术的相容性。但哥德尔的第二条定理证明了基本算术的相容性不能在自身内部证明,因此当然就不能用来证明比它更强的系统的相容性了。.
元数学和哥德尔不完备定理 · 哥德尔不完备定理和数理逻辑 ·
证明论
证明论是数理逻辑的一个分支,它将数学证明表达为形式化的数学客体,从而通过数学技术来简化对他们的分析。证明通常用归纳式地定义的数据结构来表达,例如链表,盒链表,或者树,它们根据逻辑系统的公理和推理规则构造。因此,证明论本质上是语法逻辑,和本质上是语义学的模型论形相反。和模型论,公理化集合论,以及递归论一起,证明论被称为数学基础的四大支柱之一。 证明论也可视为哲学逻辑的分支,其主要兴趣在于证明论语义学的思想,该思想依赖于结构证明论的技术型想法才可行。.
阿隆佐·邱奇
阿隆佐·邱奇(Alonzo Church,)是美国数学家,1936年发表可计算函数的第一份精确定义,对算法理论的系统发展做出巨大贡献。邱奇在普林斯顿大学受教并工作四十年,曾任数学与哲学教授。1967年迁往加利福尼亚大学洛杉矶分校。 解决算法问题包括构造一个能解决某一指定集及其他相关集的算法,如果该算法无法构建,则表明该问题是不可解的。证明此种问题不可解性的定理是算法理论中的一大突破,邱奇的算法即为该类算法的首例。邱奇证明了基本几何问题的算法不可解性。同时证明了一阶逻辑中真命题全集的解法问题是不可解的。.
概念文字
《概念文字》是1879年出版的戈特洛布·弗雷格写的一本关于逻辑学的书。书名《Begriffsschrift》通常翻译成《Concept Writing》或《Concept Notation》;书的完整标题把它标识为《模仿算术的纯思维的形式语言》。这本小书无可争议是亚里士多德之后在逻辑学领域最重要的出版物。弗雷格开发他的形式逻辑系统的动机是类似于莱布尼兹对“演算推论器”的渴望。 弗雷格定义了逻辑演算来支持他在数学基础上的研究。“概念文字”是书和其中定义的演算二者的名字。.
模型论
数学上,模型论(Model theory)是从集合论的论述角度对数学概念表现(representation)的研究,或者说是对于作为数学系统基础的“模型”的研究。粗略地说,该学科假定有一些既存的数学“对象”,然后研究:当这些对象之间的一些运算或者一些关系乃至一组公理被给定时,可以相应证明出什么,以及如何证明。 比如实数理论中一个模型论概念的例子是:我们从一个任意集合开始,作为集合元素的每个个体都是一个实数,其间有一些关系和(或)函数,例如。若我们在该语言中问"∃ y (y × y.
戈特洛布·弗雷格
弗里德里希·路德维希·戈特洛布·弗雷格(德语:Friedrich Ludwig Gottlob Frege,;),著名德国数学家、逻辑学家和哲学家。是数理逻辑和分析哲学的奠基人。.
上面的列表回答下列问题
- 什么元数学和数理逻辑的共同点。
- 什么是元数学和数理逻辑之间的相似性
元数学和数理逻辑之间的比较
元数学有21个关系,而数理逻辑有44个。由于它们的共同之处7,杰卡德指数为10.77% = 7 / (21 + 44)。
参考
本文介绍元数学和数理逻辑之间的关系。要访问该信息提取每篇文章,请访问: