我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

側錐球形屋根和加長型球形屋根

快捷方式: 差异相似杰卡德相似系数参考

側錐球形屋根和加長型球形屋根之间的区别

側錐球形屋根 vs. 加長型球形屋根

側錐球形屋根(J87, Augmented sphenocorona)是Johnson多面體的其中一個。它雖然可由球形屋根(J86)於側面增加一正四角錐(J1),但無法由柏拉圖立體(正多面體)和阿基米得立體(半正多面體)經過切割、增補而得來。這92種詹森多面體最早在1996年由(Norman Johnson)命名並給予描述。. 加長型球形屋根(J88, Sphenomegacorona)是詹森多面體的其中一個。它無法由柏拉圖立體(正多面體)和阿基米得立體(半正多面體)經過切割、增補而得來,是詹森多面體中的基本立體之一。這92種詹森多面體最早在1996年由(Norman Johnson)命名並給予描述。.

之间側錐球形屋根和加長型球形屋根相似

側錐球形屋根和加長型球形屋根有(在联盟百科)12共同点: 多面体對偶多面體三角形凸集约翰逊多面体顶点點群阿基米德立體正多面體正方形

多面体

多面體(polyhedron)是指三維空間中由平面和直邊組成的幾何形體。英文 polyhedron 源於古希臘語 πολύεδρον,由poly-(詞根 πολύς,多)和 -edron(έδρα,基底、座、面)構成,即意為「多面體」。 然而,「由平面和直邊組成的有界體」的定義方式並不明確,對現代數學而言更是不合格。克羅埃西亞數學家 Grünbaum 曾評論道:“多面體理論的原罪可追溯至歐幾里得,還有之後的克卜勒、龐索、柯西……各個時期……數學家們都未能準確定義何謂『多面體』。”自此,數學家雖以特定說法對「多面體」訂定了嚴謹的定義,但任一種卻都無法完全兼容其他定義方式。.

側錐球形屋根和多面体 · 加長型球形屋根和多面体 · 查看更多 »

對偶多面體

在幾何學,若一種多面體的每個頂點均能對應到另一種多面體上的每個面的中心,它就是對方的對偶多面體。 根據對偶原則,每種多面體都存在對偶多面體。一種多面體的對偶多面體的對偶多面體等同該種多面體。 對偶的性質可以透過一個已知的球定義。每個頂點都在一個平面之上,使得由中心向頂點的射線都和平面垂直,且中心和每點的距離的平方等於半徑的平方。在坐標來說,關於球: 頂點 和平面結合 相應的對偶多面體的頂點就是原來多面體的面的對應,而對偶多面體的面就是原來多面體的頂點的對應。另外,相鄰頂點定義出的棱能對應出兩個相鄰面,這些面的相交線亦定義出對偶多面體的一條棱。 這些規則能一般化到n維空間,以定義出對偶多胞形。多胞形的頂點能對應到對偶者的n-1維的元素,而j點能定義j-1維元素,該元素能對應到j超平面,j超平面相交的位置能給出一個n-j維元素。蜂巢的對偶也能以近似方式定義。 這個對偶的概念和射影幾何中的對偶相關。 反角柱的對偶多面體是偏方面體,每面均呈鳶形。 Category:多面体 Category:多胞形 Category:对偶理论 Category:多面體變換.

側錐球形屋根和對偶多面體 · 加長型球形屋根和對偶多面體 · 查看更多 »

三角形

三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.

三角形和側錐球形屋根 · 三角形和加長型球形屋根 · 查看更多 »

凸集

在点集拓扑学與欧几里得空间中,凸集(convex set)是一個點集合,其中每兩點之間的直线點都落在該點集合中。.

側錐球形屋根和凸集 · 凸集和加長型球形屋根 · 查看更多 »

约翰逊多面体

Johnson多面體,有譯作约翰逊多面体或莊遜多面體,是指正多面體、半正多面體、棱柱、反棱柱之外,所有由正多邊形面組成的凸多面體。這些立體由在1966年命名;1969年,證明只有92個這樣的立體。.

側錐球形屋根和约翰逊多面体 · 加長型球形屋根和约翰逊多面体 · 查看更多 »

面可以指:.

側錐球形屋根和面 · 加長型球形屋根和面 · 查看更多 »

顶点

顶点是数学和计算机科学等领域的术语,在不同的环境中有不同的意义。 在平面几何学中,顶点是指多边形两条边相交的地方,或指角的两条边的公共端点。 在立体几何学中,顶点是指在多面体中三个了了或更多的面连接的地方。 在图论中,顶点(vertex,node)可以理解为一个事物(object),而一张图则是由顶点的集合和顶点之间的连接构成的。 在计算机绘图中,顶点是空间中的一个点,一般由它的坐标表示。两个点可以确定一条直线,三个点可以确定一个平面。 在粒子物理学中,頂點是指粒子發生相互作用的點,例如LHC中兩粒子對撞產生反應的那個點就是頂點。.

側錐球形屋根和顶点 · 加長型球形屋根和顶点 · 查看更多 »

點群

在數學裡,點群是指固定一點不動之幾何對稱(等距同構)的群。.

側錐球形屋根和點群 · 加長型球形屋根和點群 · 查看更多 »

边是一个几何图形两个相邻顶点之间线段,边长指這線段的長度。假如连接两个端点的是一段曲线,数学上稱為弧。 在图论中,边(Edge,Line)是两个事物间某种特定关系的抽象化。两个事物间有联系,则这两个事物代表的顶点间就连有边,用一根直线或曲线表示。 在某些教科书,边长也用于表示在一个封闭的平面几何图形中的所有连接相邻断点的线段的长度的总和,参见周长。.

側錐球形屋根和边 · 加長型球形屋根和边 · 查看更多 »

阿基米德立體

阿基米德立體是一種高度對稱的半正多面體,且使用兩種或以上的正多邊形為面的凸多面體,並且都是可以從正多面體經過截角、截半、截邊等操作構造。阿基米德立體的每個頂點的情況相同,共有13種。阿基米德曾研究半正多面體(雖然其研究紀錄已佚),故有人將半正多面體喚作阿基米德立體。因為面是由正多邊形組成的,每個相鄰的正多邊形的邊長相等,故阿基米德立體的邊均有相同長度。阿基米德立體的对偶多面体是卡塔蘭立體。 半正多面體一詞不只是指13種阿基米德立體,而是指所有具有對稱群且由2種或2種以上正多邊形所組成的多面體。.

側錐球形屋根和阿基米德立體 · 加長型球形屋根和阿基米德立體 · 查看更多 »

正多面體

正多面體,或稱柏拉圖立體, 指各面都是全等的正多邊形且每一個頂點所接的面數都是一樣的凸多面體。 正多面體的別稱柏拉圖立體是因柏拉圖而命名的。柏拉圖的朋友泰阿泰德告訴柏拉圖這些立體,柏拉圖便將這些立體寫在《蒂邁歐篇》(Timaeus) 內。正多面體的作法收錄《几何原本》的第13卷。在命題13描述正四面體的作法;命題14為正八面體作法;命題15為立方體作法;命題16則是正二十面體作法;命題17則是正十二面體作法。.

側錐球形屋根和正多面體 · 加長型球形屋根和正多面體 · 查看更多 »

正方形

在平面几何学中,正方形是四邊相等且四個角是直角的四邊形。正方形是正多边形的一种:正四边形。四个顶点为ABCD的正方形可以记为。 正方形是二维的超方形,也是二维的正轴形。.

側錐球形屋根和正方形 · 加長型球形屋根和正方形 · 查看更多 »

上面的列表回答下列问题

側錐球形屋根和加長型球形屋根之间的比较

側錐球形屋根有15个关系,而加長型球形屋根有14个。由于它们的共同之处12,杰卡德指数为41.38% = 12 / (15 + 14)。

参考

本文介绍側錐球形屋根和加長型球形屋根之间的关系。要访问该信息提取每篇文章,请访问: