我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

偏振和法拉第效应

快捷方式: 差异相似杰卡德相似系数参考

偏振和法拉第效应之间的区别

偏振 vs. 法拉第效应

偏振(polarization)指的是横波能夠朝著不同方向振盪的性質。例如電磁波、引力波都會展示出偏振現象。纵波则不會展示出偏振現象,例如傳播於氣體或液體的聲波,其只會朝著傳播方向振盪。如右圖所示,緊拉的細線可以展示出線偏振現象與圓偏振現象。 電磁波的電場與磁場彼此相互垂直。按照常規,電磁波的偏振方向指的是電場的偏振方向。在自由空間裏,電磁波是以橫波方式傳播,即電場與磁場又都垂直於電磁波的傳播方向。理論而言,只要垂直於傳播方向的方向,振盪的電場可以呈任意方向。假若電場的振盪只朝著單獨一個方向,則稱此為「線偏振」或「平面偏振」;假若電場的振盪方向是以電磁波的波頻率進行旋轉動作,並且電場向量的矢端隨著時間流意勾繪出圓型,則稱此為「圓偏振」;假若勾繪出橢圓型,則稱此為「橢圓偏振」;對於這兩個案例,又可按照在任意位置朝著源頭望去,電場隨時間流易而旋轉的順時針方向、逆時針方向,將圓偏振細分為「右旋圓偏振」、「左旋圓偏振」,將橢圓偏振細分為「右旋橢圓偏振」、「左旋橢圓偏振」;這性質稱為手徵性。 光波是一種電磁波。很多常見的光學物質都具有各向同性,例如玻璃。這些物質會維持波的偏振態不變,不會因偏振態的不同而展現出不同的物理行為。可是,有些重要的雙折射物質或光學活性物質具有各向異性。因此,偏振方向的不同,波的傳播狀況也不同,或者,波的偏振方向會被改變。起偏器是一種光學濾波器,只能讓朝著某特定方向偏振的光波通過,因此,可以將非偏振光變為偏振光。 在涉及到橫波傳播的科學領域,例如光學、地震學、無線電學、微波學等等,偏振是很重要的參數。激光、光纖通信、無線通信、雷達等等應用科技,都需要完善處理偏振問題。 極化的英文原文也是「polarization」,在英文文獻裏,偏振與極化兩個術語通用,都是使用同一個詞彙來表達,只有在中文文獻裏,才有不同的用法。一般來說,偏振指的是任何波動朝著某特定方向振盪的性質,而極化指的是各個帶電粒子因正負電荷在空間裡分離而產生的現象。. 在物理學,法拉第效应(又叫法拉第旋转)是一种磁光效应(magneto-optic effect),是在介質內光波與磁場的一種相互作用。法拉第效應會造成偏振平面的旋轉,這旋轉與磁場朝著光波傳播方向的分量呈線性正比關係。 於1845年,麥可·法拉第发现了法拉第效應。這是最先揭示光波和電磁現象之間關係的實驗證據。由於法拉第效應顯示出,在穿過介質時,偏振光波會因為外磁場的作用,轉變偏振的方向,因此,馬克士威認為磁場是一種旋轉現象。這效應給予馬克士威重要的啟發。在於1861年發表的巨作《論物理力線》第四部份,為了突顯出自己設計的「分子渦流模型」的威力,他應用這模型來推導出法拉第效應。在1870年代,詹姆斯·馬克士威進一步發展出電磁輻射(包括可見光)的基礎理論。大多數對於光波呈透明狀況的介質(包括液體),當感受到磁場作用時,會出現這種效應。 法拉第效應會使得左旋圓偏振光波與右旋圓偏振光波各自以不同的速度傳播於某些介質,這性質稱為圓雙折射。由於線性偏振可以分解為兩個圓偏振部份的疊加,而這兩個圓偏振部份之間的振幅相同、螺旋性(helicity)不同、相位不同,法拉第效應所感應出的相對的相移,會造成線性偏振取向的旋轉。 法拉第效應可以應用於測量儀器。例如,法拉第效應被用於測量旋光度、或光波的振幅調變、或磁場的遙感。在自旋電子學裏,法拉第效應被用於研究半導體內部的電子自旋的極化。(Faraday rotator) 可以用於光波的調幅,是光隔離器與(optical circulator)的基礎組件,在光通訊與其它激光領域必備組件。.

之间偏振和法拉第效应相似

偏振和法拉第效应有(在联盟百科)15共同点: 可见光密度微波磁場真空电容率特斯拉相位順時針方向詹姆斯·克拉克·麦克斯韦逆時針方向折射率波长激光振幅无线电

可见光

可見光(Visible light)是電磁波譜中人眼可以看見(感受得到)的部分。這個範圍中電磁輻射被稱為可見光,或簡單地稱為光。人眼可以感受到的波長範圍一般是落在390到700nm。對應於這些波長的頻率範圍在430–790 THz。但有一些人能够感知到波长大约在380到780nm之间的电磁波。正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。.

偏振和可见光 · 可见光和法拉第效应 · 查看更多 »

密度

3 | symbols.

偏振和密度 · 密度和法拉第效应 · 查看更多 »

微波

微波(Microwave,Mikrowellen)是指波长介于红外线和無線電波之间的电磁波。微波的頻率范围大约在 300MHz至300GHz之間。所對應的波長為1公尺至1mm之间。微波频率比无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性。微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。 微波在雷达科技、ADS射线武器、微波炉、等离子发生器、无线网络系统(如手机网络、蓝牙、卫星电视及無線區域網路技术等)、传感器系统上均有广泛的应用。 在技术领域协定使用的四个频率分别为800MHz、2.45GHz、5.8GHz和13GHz。微波炉使用2.45GHz,此频率亦被作为ISM頻段(工業、科學及醫學用波段),使用在航空通讯领域。.

偏振和微波 · 微波和法拉第效应 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

偏振和磁場 · 法拉第效应和磁場 · 查看更多 »

真空电容率

真空电容率,又称为真空介电系数,或電常數,是一个常见於电磁学的物理常数,符号为\epsilon_0\,\!。在国际单位制裏,真空电容率的數值为: 真空電容率\epsilon_0\,\!可以用公式定義為 其中,c_0\,\!是光波傳播於真空的光速,\mu_0\,\!是真空磁導率。 採用國際單位制,光速的數值定義為 299\ 792\ 458\,\!公尺/秒,真空磁導率的數值定義為 4\pi\times 10^\,\! 亨利/公尺。因此,\epsilon_0\,\!的數值也是個定義值。但是,由於\pi\,\!是個無理數;所以,\epsilon_0\,\!只能近似為 這些數值都可以在2006 CODATA報告裏找到。 真空電容率出現於電位移\mathbf\,\!的定義式: 其中,\mathbf\,\!是電場,\mathbf\,\!是電介質的經典電極化強度。 學術界常遇到一個錯誤的觀點,就是認為真空電容率\epsilon_0\,\!是一個可實現真空的一個物理性質。正確的觀點應該為,\epsilon_0\,\!是一個度量系統常數,是由國際公約發表和定義而產生的結果。\epsilon_0\,\!的定義值是由光波在參考系統的光速或基準(benchmark)光速的衍生而得到的數值。這參考系統稱為自由空間,被用為在其它各種介質的測量結果的比較基線。可實現真空,像外太空、超高真空(ultra high vacuum)、量子色動真空(QCD vacuum)、量子真空(quantum vacuum)等等,它們的物理性質都只是實驗和理論問題,應與\epsilon_0\,\!分題而論。\epsilon_0\,\!的含義和數值是一個度量衡學(metrology)問題,而不是關於可實現真空的問題。為了避免產生混淆,許多標準組織現在都傾向於採用電常數為\epsilon_0\,\!的名稱。.

偏振和真空电容率 · 法拉第效应和真空电容率 · 查看更多 »

特斯拉

特斯拉(tesla),符号表示为T,是磁通量密度(Wb/m2)或磁感应强度的国际单位制导出单位。.

偏振和特斯拉 · 法拉第效应和特斯拉 · 查看更多 »

相位

位(phase),是描述訊號波形變化的度量,通常以度(角度)作為單位,也稱作相角或相。當訊號波形以週期的方式變化,波形循環一周即為360º。常應用在科學領域,如數學、物理學、電學等。.

偏振和相位 · 法拉第效应和相位 · 查看更多 »

順時針方向

以順時針方向運行指依從時針移動的方向運行(如右上圖),即可視為由右上方向下,然後轉向左,再回到上。數學上,在直角坐标系以方程式x.

偏振和順時針方向 · 法拉第效应和順時針方向 · 查看更多 »

詹姆斯·克拉克·麦克斯韦

詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell,),苏格兰数学物理学家。其最大功绩是提出了将电、磁、光统归为电磁场中现象的麦克斯韦方程组。麦克斯韦在电磁学领域的功绩实现了物理学自艾萨克·牛顿后的第二次统一。 在1864年發表的論文《電磁場的動力學理論》中,麦克斯韦提出電場和磁場以波的形式以光速在空間中传播,并提出光是引起同种介质中電场和磁场中許多現象的电磁扰动,同时从理论上预测了电磁波的存在。此外,他还推进了分子运动论的发展,提出了彩色摄影的基础理论,奠定了结构刚度分析的基礎。 麦克斯韦被普遍认为是十九世纪物理学家中,对于二十世纪初物理学的巨大进展影响最为巨大的一位。他的科学工作为狭义相对论和量子力学打下理论基础,是现代物理学的先声。有观点认为,他对物理学的发展做出的贡献仅次于艾萨克·牛顿和阿尔伯特·爱因斯坦。在麦克斯韦百年诞辰时,爱因斯坦本人盛赞了麦克斯韦,称其对于物理学做出了“自牛顿时代以来的一次最深刻、最富有成效的变革”。.

偏振和詹姆斯·克拉克·麦克斯韦 · 法拉第效应和詹姆斯·克拉克·麦克斯韦 · 查看更多 »

逆時針方向

以逆時針方向運行指依從時針移動的相反方向(如圖),即可視為由左上方向下,然後轉向右,再回到上。也就是說逆時針方向就是順時針方向的相反,也是鏡射變換後的結果,故逆時針方向的反方向就是順時針方向。太陽系大部分的行星由北半球正上方看下去,該自轉屬於逆時針,但金星是順時針方向和其他行星相反。.

偏振和逆時針方向 · 法拉第效应和逆時針方向 · 查看更多 »

折射率

某种介质的折射率  等于光在真空中的速度  跟光在介质中的相速度  之比: (nv.

偏振和折射率 · 折射率和法拉第效应 · 查看更多 »

波长

波长是一個物理學的名詞,指在某一固定的頻率裡,沿着波的传播方向、在波的图形中,離平衡位置的「位移」與「時間」皆相同的两个质点之间的最短距离。在物理學,波長普遍使用希臘字母λ來表示。.

偏振和波长 · 法拉第效应和波长 · 查看更多 »

激光

雷射(LASER),中國大陸譯成激--光,在港澳台又音譯为镭--射或雷--射,是“通过受激辐射产生的光放大”(Light Amplification by Stimulated Emission of Radiation)的缩写,指通过刺激原子导致电子跃迁释放辐射能量而产生的具有同調性的增强光子束,其特点包括发散度极小,亮度(功率)可以达到很高等。產生激光需要“激發來源”,“增益介質”,“共振结构”這三個要素。.

偏振和激光 · 法拉第效应和激光 · 查看更多 »

振幅

振幅是在波动或振动中距离平衡位置或静止位置的最大位移。符号A,单位米。振幅屬於標量,振幅永为非負值(≥0)。 在下图中,位移“y”表示波的振幅。 系統振動中最大動態位移,稱為振幅。 概念辨析(振幅≠幅度):.

偏振和振幅 · 振幅和法拉第效应 · 查看更多 »

无线电

無線電,又稱无线电波、射頻電波、電波,或射頻,是指在自由空間(包括空氣和真空)傳播的電磁波,在電磁波譜上,其波長長於紅外線光(IR)。頻率範圍為300 GHz以下 ,其對應的波長範圍為1公釐以上。就像其他電磁波一樣,無線電波以光速前進。經由閃電或天文物體,可以產生自然的無線電波。由人工產生的無線電波,被應用在無線通訊、廣播、雷達、通訊衛星、導航系統、電腦網路等應用上。 無線電發射機,藉由交流電,經過振盪器,變成高頻率交流電,產生電磁場,而經由電磁場可產生無線電波。無線電波像磁鐵,有同性相斥、異性相吸的現象。同類電子會互相排斥,因此當無線電波射出時,會將前方電波往前推,當連續電波一直射出來時,電波就會在空氣中傳播。 無線電技術是通過無線電波傳播信號的技術,其原理在於,導體中電流強弱的改變會產生無線電波。利用這一現象,通過調製可將信息加載於無線電波之上。當電波通過空間傳播到達收信端,電波引起的電磁場變化又會在導體中產生電流。通過解調將訊息從電流變化中提取出來,就達到了資訊傳遞的目的。 麥克斯韋最早在他遞交給英國皇家學會的論文《電磁場的動力理論》中闡明了電磁波傳播的理論基礎。他的這些工作完成於1861年至1865年之間。 海因里希·魯道夫·赫茲在1886年至1888年間首先通過試驗驗證了麥克斯韋爾的理論。他證明了無線電輻射具有波的所有特性,並發現電磁場方程可以用偏微分方程表達,通常稱為波動方程。 1906年聖誕前夜,范信達在美國麻薩諸塞州採用外差法實現了歷史上首次無線電廣播。范信達廣播了他自己用小提琴演奏「平安夜」和朗誦《聖經》片段。位於英格蘭切爾姆斯福德的馬可尼研究中心在1922年開播世界上第一個定期播出的無線電廣播娛樂節目。.

偏振和无线电 · 无线电和法拉第效应 · 查看更多 »

上面的列表回答下列问题

偏振和法拉第效应之间的比较

偏振有138个关系,而法拉第效应有62个。由于它们的共同之处15,杰卡德指数为7.50% = 15 / (138 + 62)。

参考

本文介绍偏振和法拉第效应之间的关系。要访问该信息提取每篇文章,请访问: