我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

偏度和標準差

快捷方式: 差异相似杰卡德相似系数参考

偏度和標準差之间的区别

偏度 vs. 標準差

在機率論和統計學中,偏度衡量實數隨機變量概率分布的不對稱性。偏度的值可以為正,可以為負或者甚至是無法定義。在數量上,偏度為負(負偏態)就意味着在概率密度函數左側的尾部比右側的長,絕大多數的值(包括中位數在內)位於平均值的右側。偏度為正(正偏態)就意味着在概率密度函數右側的尾部比左側的長,絕大多數的值(但不一定包括中位數)位於平均值的左側。偏度為零就表示數值相對均勻地分布在平均值的兩側,但不一定意味着其為對稱分布。. 標準差(又稱标准偏差、--,,缩写SD),数学符号σ(sigma),在概率統計中最常使用作為測量一組數值的離散程度之用。標準差定義:為方差開算术平方根,反映组内个体间的离散程度;标准差与期望值之比为标准离差率。測量到分佈程度的結果,原則上具有兩種性質:.

之间偏度和標準差相似

偏度和標準差有(在联盟百科)4共同点: 实数统计学随机变量期望值

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

偏度和实数 · 实数和標準差 · 查看更多 »

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

偏度和统计学 · 標準差和统计学 · 查看更多 »

随机变量

給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.

偏度和随机变量 · 標準差和随机变量 · 查看更多 »

期望值

在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.

偏度和期望值 · 期望值和標準差 · 查看更多 »

上面的列表回答下列问题

偏度和標準差之间的比较

偏度有14个关系,而標準差有28个。由于它们的共同之处4,杰卡德指数为9.52% = 4 / (14 + 28)。

参考

本文介绍偏度和標準差之间的关系。要访问该信息提取每篇文章,请访问: