之间倒角二十面體和倒角十二面體相似
倒角二十面體和倒角十二面體有(在联盟百科)13共同点: 卡塔蘭立體,交錯截角菱形三十面體,几何学,凸集,六邊形,倒角四面體,倒角立方體,立方體,正十二面體,正多面體,正二十面體,正八面體,正四面體。
卡塔蘭立體
卡塔蘭立體是半正多面體的對偶多面體,都是凸多面體。1865年比利時數學家歐仁·查理·卡塔蘭最先描述它們。 卡塔蘭立體面可遞而點不可遞,而其對偶多面體半正多面體點可遞而面不可遞。只有兩個邊可遞的卡塔蘭立體:菱形十二面體和菱形三十面體。 所有多面體中只有有13種是卡塔蘭立體,其對偶多面體均為阿基米德立體(半正多面體)。.
交錯截角菱形三十面體
#重定向 截角菱形三十面體#交錯截角菱形三十面體.
交錯截角菱形三十面體和倒角二十面體 · 交錯截角菱形三十面體和倒角十二面體 ·
几何学
笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.
倒角二十面體和几何学 · 倒角十二面體和几何学 ·
凸集
在点集拓扑学與欧几里得空间中,凸集(convex set)是一個點集合,其中每兩點之間的直线點都落在該點集合中。.
六邊形
#重定向 六边形.
倒角二十面體和六邊形 · 倒角十二面體和六邊形 ·
倒角四面體
在幾何學中,倒角四面體(Chamfered Tetrahedron),又稱為交错截角立方体(Alternate Truncated Cube)是一種凸多面體,透過交替地將立方體截去頂點或在將四面體進行倒角操作——用六邊形取代其6邊。 倒角四面體是一種戈德堡多面體,其符號為GIII(2,0).
倒角立方體
#重定向 倒角立方体.
立方體
立方體(Cube),是由6個正方形面組成的正多面體,故又稱正六面體(Hexahedron)、正方體或正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。 立方體是一種特殊的正四棱柱、長方體、三角偏方面體、菱形多面體、平行六面體,就如同正方形是特殊的矩形、菱形、平行四邊形一様。立方體具有,即考克斯特BC3對稱性,施萊夫利符號,,與正八面體對偶。.
倒角二十面體和立方體 · 倒角十二面體和立方體 ·
正十二面體
正十二面體是由12個正五邊形所組成的正多面體,它共有20个顶点、30条棱、160条对角线,被施莱夫利符号所表示,与正二十面体互成对偶。它是一种只具有的五角十二面体的特殊形式,五角十二面体的另一种特殊形式是具有的卡塔兰多面体菱形十二面体,它(加上所有其它的五角十二面体)都与正十二面体在拓扑上等价。正十二面體还是截顶五方偏方面體的特例。其四維類比為正一百二十胞體。.
正多面體
正多面體,或稱柏拉圖立體, 指各面都是全等的正多邊形且每一個頂點所接的面數都是一樣的凸多面體。 正多面體的別稱柏拉圖立體是因柏拉圖而命名的。柏拉圖的朋友泰阿泰德告訴柏拉圖這些立體,柏拉圖便將這些立體寫在《蒂邁歐篇》(Timaeus) 內。正多面體的作法收錄《几何原本》的第13卷。在命題13描述正四面體的作法;命題14為正八面體作法;命題15為立方體作法;命題16則是正二十面體作法;命題17則是正十二面體作法。.
正二十面體
正二十面體是一種正多面體,由20個正三角形組成。同時,它也是柏拉圖立體、三角面多面體以及康威多面體。正二十面体是所有五种正多面體面數最多的。 正二十面體有20個面、30個邊和12個頂點,其對偶是正十二面體。它的頂點布局為3.3.3.3.3或35,在施萊夫利符號中可用來表示。.
正八面體
正八面體由八個等邊三角形,分別為上、下各四個三角形與一個正方形組成的正方錐體,上下黏合在一起而構成,是五種正多面體的第三種,有6個頂點和12條邊。正八面體也是正三角反棱柱。正八面体是三维的正轴形,施莱夫利符号,。 正八面體每四条棱可以成为一个正方形,共有三个独立的正方形。.
正四面體
正四面體是由四個等邊三角形組成的正多面體,是一种錐體,有4個頂點,6條邊和4个正三角形面。 將立方體的其中四個頂點两两相連,而這四個頂點任何兩條都沒有落在立方體同一條的邊上,可得到一個正四面體,其邊長為立方體邊長的\sqrt,其體積為立方體體積的\frac,从这里看,正四面体是半立方体。 正四面体是一个拥有无穷多个成员的多胞形家族—正单纯形家族的3维成员。正四面体是一种棱锥体,即它可以被描述成由一个多边形底面和链接底面和一个共同顶点的三角形面组成,对于正四面体来说,这个底面是正三角形,并且它的侧面也都是正三角形,应此正四面体是正三棱锥。 正四面体是三维的正单纯形(3-simplex),这意味着四面体是三维中最简单的多面体,顶点数、棱数、面数比它少的多面体都只能成为退化多面体,同时在更高维的超空间中,任意4个顶点一定共在同一三维空间中,这4个顶点若不存在四点共面、三点共线和两点重合的情况,一定能构成一个四面体,并且只要6条棱的长度确定了,四面体就被唯一确定了(即四面体具有稳定性。这是单纯形面多胞形共有的一个基本特性),由此可知,一个四面体的6条棱长都相等,则其一定是一个正四面体。正四面体是柏拉图立体中唯一一个所有顶点之间的距离都相等的,同时正四面体也是三维空间中使4个顶点每两个顶点间距离相等的唯一方式。.
上面的列表回答下列问题
- 什么倒角二十面體和倒角十二面體的共同点。
- 什么是倒角二十面體和倒角十二面體之间的相似性
倒角二十面體和倒角十二面體之间的比较
倒角二十面體有16个关系,而倒角十二面體有30个。由于它们的共同之处13,杰卡德指数为28.26% = 13 / (16 + 30)。
参考
本文介绍倒角二十面體和倒角十二面體之间的关系。要访问该信息提取每篇文章,请访问: