信息论和数学常数
快捷方式: 差异,相似,杰卡德相似系数,参考。
信息论和数学常数之间的区别
信息论 vs. 数学常数
信息论(information theory)是应用数学、電機工程學和计算机科学的一个分支,涉及信息的量化、存储和通信等。信息论是由克劳德·香农发展,用来找出信号处理与通信操作的基本限制,如数据压缩、可靠的存储和数据传输等。自创立以来,它已拓展应用到许多其他领域,包括统计推断、自然语言处理、密码学、神经生物学、进化论和分子编码的功能、生态学的模式选择、热物理、量子计算、语言学、剽窃检测、模式识别、异常检测和其他形式的数据分析。 熵是信息的一个关键度量,通常用一条消息中需要存储或传输一个的平均比特数来表示。熵衡量了预测随机变量的值时涉及到的不确定度的量。例如,指定擲硬幣的结果(两个等可能的结果)比指定掷骰子的结果(六个等可能的结果)所提供的信息量更少(熵更少)。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信道编码定理、信源-信道隔离定理相互联系。 信息论的基本内容的应用包括无损数据压缩(如ZIP文件)、有损数据压缩(如MP3和JPEG)、信道编码(如DSL))。这个领域处在数学、统计学、计算机科学、物理学、神经科学和電機工程學的交叉点上。信息论对航海家深空探测任务的成败、光盘的发明、手机的可行性、互联网的发展、语言学和人类感知的研究、对黑洞的了解,以及许多其他领域都影响深远。信息论的重要子领域有信源编码、信道编码、算法复杂性理论、算法信息论、資訊理論安全性和信息度量等。. 一个数学常数是指一个数值不变的常量,与之相反的是变量。跟大多数物理常数不一样的地方是,数学常数的定义是独立于所有物理测量的。 数学常数通常是实数或复数域的元素。数学常数可以被称为是可定义的数字(通常都是可计算的)。 其他可选的表示方法可以在数学常数 (以连分数表示排列)中找到。.
之间信息论和数学常数相似
信息论和数学常数有(在联盟百科)0共同点。
上面的列表回答下列问题
- 什么信息论和数学常数的共同点。
- 什么是信息论和数学常数之间的相似性
信息论和数学常数之间的比较
信息论有62个关系,而数学常数有30个。由于它们的共同之处0,杰卡德指数为0.00% = 0 / (62 + 30)。
参考
本文介绍信息论和数学常数之间的关系。要访问该信息提取每篇文章,请访问: