之间低功耗设计和集成电路相似
低功耗设计和集成电路有(在联盟百科)8共同点: 微处理器,移动电话,纳米,电容器,超大规模集成电路,金屬氧化物半導體場效電晶體,集成电路,摩尔定律。
微处理器
微处理器(Microprocessor,缩写:µP或uP)是可程式化特殊集成电路。一种处理器,其所有元件小型化至一块或数块集成电路内。一种集成电路,可在其一端或多端接受编码指令,执行此指令并输出描述其状态的信号。这些指令能在内部输入、集中或存放起来。又称半导体中央处理器(CPU),是微型计算机的一个主要部件。微处理器的元件常安装在一个单片上或在同一组件内,但有时分布在一些不同芯片上。在具有固定指令集的微型计算机中,微处理器由算术逻辑单元和控制逻辑单元组成。在具有微程序控制的指令集的微型计算机中,它包含另外的控制存储单元。用作处理通用资料时,叫作中央处理器。這也是最为人所知的应用(如:Intel Pentium CPU);专用于图像资料处理的,叫作Graphics Processing Unit图形处理器(如Nvidia GeForce 9X0 GPU);用于音讯资料处理的,叫作Audio Processing Unit音讯处理单元(如Creative emu10k1 APU)等等。从物理角度来说,它就是一块集成了数量庞大的微型晶体管与其他电子元件的半导体集成电路芯片。 之所以会被称为微處理器,並不只是因为它比迷你电脑所用的处理器还要小而已。最主要的区别別,还是因为当初各大晶片厂之制程,已经进入了1 微米的阶段,用1 微米的制造,所產製出來的处理器晶片,厂商就会在产品名称上用「微」字,强调他们很高科技。与现在的许多商业广告中,「纳米」字眼时常出现一样。 早在微处理器问世之前,電子計算機的中央处理单元就经历了从真空管到晶体管以及再后来的离散式TTL集成电路等几个重要阶段。甚至在電子計算機以前,还出现过以齿轮、轮轴和杠杆为基础的机械结构计算机。,但那个时代落后的制造技术根本没有能力将这个设计付诸实现。微處理器的發明使得複雜的電路群得以製成單一的電子元件。 从1970年代早期开始,微处理器性能的提升就基本上遵循着IT界著名的摩尔定律。这意味着在过去的30多年里每18个月,CPU的计算能力就会翻倍。大到巨型机,小到筆記型电脑,持续高速发展的微处理器取代了诸多其他计算形式而成为各个类别各个领域所有计算机系统的计算动力之源。.
低功耗设计和微处理器 · 微处理器和集成电路 ·
移动电话
行動電話,又稱「手提式電話機」或「手提電話」,簡稱「手--機」,是可以在較廣範圍内使用的可攜式電話,與固定電話(座機)相對。1990年代中期以前價格昂貴,只有極少部分經濟實力較佳的人才買得起,而且體積龐大,因此又有大哥大的俗稱。1990年代後期大幅降價,如今已成為現代人日常不可或缺的電子用品之一。 目前在全球範圍内使用最廣是的第三代行動通訊技術。在台湾和中國大陸以GSM和LTE最為普及。第二代移动通信技术以GSM為主,它是數位制式的,除了可以進行語音通信以外,還可以收發短信、MMS、無線應用協議等。目前整個行業正在向第三代和第四代行動通訊技術遷移。 手機外觀上一般都應該包括至少一個液晶顯示器和一套按鍵,現時採用觸控式螢幕的手機減少了按鍵。現代的手機除了典型的電話功能外,還包含了個人數位助理、遊戲機、MP3、照相機、錄音機、GPS和連接網際網路等更多功能,它們都概括性地統稱作智慧型手機。.
低功耗设计和移动电话 · 移动电话和集成电路 ·
纳米
纳米(符號 nm,nanometre、nanometer,字首 nano 在希臘文中的原意是「侏儒」的意思),是一个長度單位,指1米的十億分之一(10-9m)。 有時候也會見到埃米(符號 Å)這個單位,為10-10m。 1納米(nm).
电容器
電容器(Capacitor)是兩金屬板之間存在絕緣介質的一种电路元件。其單位為法拉,符号为F。電容器利用二個導體之間的電場來儲存能量,二導體所帶的電荷大小相等,但符號相反。.
超大规模集成电路
超大规模集成电路(very-large-scale integration,縮寫:VLSI),是一种将大量晶体管组合到单一芯片的集成电路,其集成度大于大规模集成电路。集成的晶体管数在不同的标准中有所不同。从1970年代开始,随着复杂的半导体以及通信技术的发展,集成电路的研究、发展也逐步展开。计算机里的控制核心微处理器就是超大规模集成电路的最典型实例,超大规模集成电路设计(VLSI design),尤其是数字集成电路,通常采用电子设计自动化的方式进行,已经成为计算机工程的重要分支之一。.
低功耗设计和超大规模集成电路 · 超大规模集成电路和集成电路 ·
金屬氧化物半導體場效電晶體
金屬氧化物半導體場效電晶體(簡稱:金氧半場效電晶體;Metal-Oxide-Semiconductor Field-Effect Transistor,縮寫:MOSFET),是一種可以廣泛使用在模拟電路與数字電路的場效電晶體。金屬氧化物半導體場效電晶體依照其通道極性的不同,可分為电子占多数的N通道型與空穴占多数的P通道型,通常被稱為N型金氧半場效電晶體(NMOSFET)與P型金氧半場效電晶體(PMOSFET)。 以金氧半場效電晶體(MOSFET)的命名來看,事實上會讓人得到錯誤的印象。因為MOSFET跟英文單字「metal(金屬)」的第一個字母M,在當下大部分同類的元件裡是不存在的。早期金氧半場效電晶體閘極使用金屬作為材料,但由於多晶矽在製造工藝中更耐高溫等特點,許多金氧半場效電晶體閘極採用後者而非前者金屬。然而,隨著半導體特徵尺寸的不斷縮小,金屬作為閘極材料最近又再次得到了研究人員的關注。 金氧半場效電晶體在概念上屬於絕緣閘極場效電晶體(Insulated-Gate Field Effect Transistor, IGFET)。而絕緣閘極場效電晶體的閘極絕緣層,有可能是其他物質,而非金氧半場效電晶體使用的氧化層。有些人在提到擁有多晶矽閘極的場效電晶體元件時比較喜歡用IGFET,但是這些IGFET多半指的是金氧半場效電晶體。 金氧半場效電晶體裡的氧化層位於其通道上方,依照其操作電壓的不同,這層氧化物的厚度僅有數十至數百埃(Å)不等,通常材料是二氧化硅(SiO2),不過有些新的進階製程已經可以使用如氮氧化硅(silicon oxynitride, SiON)做為氧化層之用。 今日半導體元件的材料通常以矽為首選,但是也有些半導體公司發展出使用其他半導體材料的製程,當中最著名的例如國際商業機器股份有限公司使用硅與鍺的混合物所發展的矽鍺製程(SiGe process)。而可惜的是很多擁有良好電性的半導體材料,如砷化鎵(GaAs),因為無法在表面長出品質夠好的氧化層,所以無法用來製造金氧半場效電晶體元件。 當一個夠大的電位差施於金氧半場效電晶體的閘極與源極之間時,電場會在氧化層下方的半導體表面形成感應電荷,而這時就會形成反轉通道(inversion channel)。通道的極性與其汲極(drain)與源極相同,假設汲極和源極是n型,那麼通道也會是n型。通道形成後,金氧半場效電晶體即可讓電流通過,而依據施於閘極的電壓值不同,可由金氧半場效電晶體的通道流過的電流大小亦會受其控制而改變。.
低功耗设计和金屬氧化物半導體場效電晶體 · 金屬氧化物半導體場效電晶體和集成电路 ·
集成电路
集成电路(integrated circuit,縮寫:IC;integrierter Schaltkreis)、或称微电路(microcircuit)、微芯片(microchip)、晶--片/芯--片(chip)在电子学中是一种把电路(主要包括半導體裝置,也包括被动元件等)小型化的方式,並時常制造在半导体晶圓表面上。 前述將電路製造在半导体晶片表面上的積體電路又稱薄膜(thin-film)積體電路。另有一種(thick-film)(hybrid integrated circuit)是由独立半导体设备和被动元件,集成到基板或线路板所构成的小型化电路。 本文是关于单片(monolithic)集成电路,即薄膜積體電路。 從1949年到1957年,維爾納·雅各比(Werner Jacobi)、杰弗里·杜默 (Jeffrey Dummer)、西德尼·達林頓(Sidney Darlington)、樽井康夫(Yasuo Tarui)都開發了原型,但現代積體電路是由傑克·基爾比在1958年發明的。其因此榮獲2000年諾貝爾物理獎,但同時間也發展出近代實用的積體電路的罗伯特·诺伊斯,卻早於1990年就過世。.
低功耗设计和集成电路 · 集成电路和集成电路 ·
摩尔定律
摩尔定律(Moore's law)是由英特尔(Intel)创始人之一戈登·摩尔提出来的。其内容为:積體电路上可容纳的電晶体(--)数目,约每隔兩年便会增加一倍;经常被引用的“18个月”,是由英特尔首席执行官大衛·豪斯(David House)所说:预计18个月会将芯片的性能提高一倍(即更多的晶体管使其更快)。 半导体行业大致按照摩尔定律发展了半个多世纪,对二十世纪后半叶的世界经济增长做出了贡献,并驱动了一系列科技创新、社会改革、生产效率的提高和经济增长。个人电脑、因特网、智能手机等技术改善和创新都离不开摩尔定律的延续。 盡管摩爾定律的現象已經被觀察到了數十年,摩尔定律仍应该被視為是對現象的观测或對未來的推测,而不是一个物理定律或自然界的規律,從另一角度看,未來的增長率在邏輯上無法保證會跟過去的--一樣,也就是邏輯上無法保證摩爾定律會持續下去。雖然预计摩尔定律将持续到至少2020年。然而,2010年国际半导体技术发展路线图的更新增长已经在2013年年底放缓;又比如說英特爾在22奈米跟14奈米的CPU製程上已經放慢了技術更新的腳步,.
低功耗设计和摩尔定律 · 摩尔定律和集成电路 ·
上面的列表回答下列问题
- 什么低功耗设计和集成电路的共同点。
- 什么是低功耗设计和集成电路之间的相似性
低功耗设计和集成电路之间的比较
低功耗设计有21个关系,而集成电路有85个。由于它们的共同之处8,杰卡德指数为7.55% = 8 / (21 + 85)。
参考
本文介绍低功耗设计和集成电路之间的关系。要访问该信息提取每篇文章,请访问: