位置空间与动量空间和玻尔兹曼方程
快捷方式: 差异,相似,杰卡德相似系数,参考。
位置空间与动量空间和玻尔兹曼方程之间的区别
位置空间与动量空间 vs. 玻尔兹曼方程
位置空间与动量空间是物理学中一对联系紧密的矢量空间。 位置空间(或称实空间、坐标空间)是空间中所有物体的位置向量r的集合。这个空间通常是三维的。位置向量定义了空间中的一个点。如果位置向量随时间会发生变化的话,那么它就可以描绘出一个路径或一个面,如粒子的运动轨迹。 动量空间是空间中所有物体的动量向量的集合。这个空间通常也是三维的。一个物体的动量可以反映它的运动情况。无论在经典力学还是在量子力学中,动量都是非常重要的一个概念。然而,依据量子力学的德布罗意关系,p. 玻尔兹曼方程或玻尔兹曼输运方程(Boltzmann transport equation,BTE)是一个描述非热力学平衡状态的热力学系统统计行为的偏微分方程,由路德维希·玻尔兹曼于1872年提出。Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3关于此方程描述的系统,一个经典的例子是空间中一具有温度梯度的流体。构成此流体的微粒通过随机而具有偏向性的流动使得热量从较热的区域流向较冷的区域。 在现今的论文中,“玻尔兹曼方程“这个术语常被用于更一般的意义上,它可以是任何涉及描述热力学系统中宏观量(如能量,电荷或粒子数)的变化的动力学方程。 波尔兹曼方程并不对流体中每个粒子的位置和动量做统计分析,而只考虑一群同时占据着空间中任意小(在数学上写作 d^3\mathbf )区域,且以位置矢量 \mathbf 末端为中心的粒子。这群粒子的动量在一段极短的时间内,相对于动量矢量 \mathbf 只有几乎同样小的变化(因此这些粒子在动量空间中也占据着任意小区域 d^3\mathbf )。 波尔兹曼方程可用于确定物理量是如何变化的,例如流体在输运过程中的热能和动量。我们还可以由此推导出其他的流体特征性质,例如粘度,导热性,以及导电率(将材料中的载流子视为气体)Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3。详见对流扩散方程式。 波尔兹曼方程是一个非线性。方程中的未知函数是一个包含了粒子空间位置和动量的六维概率密度函数。此方程的解的存在性和唯一性问题仍然没有完全解决,但最近发表的一些结果还是能够让人看到解决此问题的希望。.
之间位置空间与动量空间和玻尔兹曼方程相似
位置空间与动量空间和玻尔兹曼方程有(在联盟百科)4共同点: 动量,位置向量,哈密顿力学,相空間。
在古典力学裏,动量(momentum)是物体的质量和速度的乘積。例如,一輛快速移動的重型卡車擁有很大的動量。若要使這重型卡車從零速度加速到移動速度,需要使到很大的作用力;若要使重型卡車從移動速度減速到零速度也需要使到很大的作用力。假若卡車能夠輕一點或移動速度能夠慢一點,則它的動量也會小一點。 动量在国际单位制中的单位为kg m s^。有關动量的更精确的量度的内容,请参见本页的动量的现代定义部分。 一般而言,一个物体的动量指的是这个物体在它运动方向上保持运动的趋势。动量实际上是牛顿第一定律的一个推论。 动量是个矢量。 动量是一个守恒量,这表示为在一个封闭系统内动量的总和不可改变。在经典力学中,动量守恒暗含在牛顿定律中,但在狭义相对论中依然成立,(广义)动量在电动力学、量子力学、量子场论、广义相对论中也成立。 勒内·笛卡儿认为宇宙中总的“运动的量”是保持守恒的,这里所说的“运动的量”被理解为“物体大小和速度的乘积”——但这不宜被解读为现代动量定律的表达方式,因为笛卡尔并没有把“质量”这个概念与物体“重量”和“大小”之间的关系区分开来,更重要的是他认为速率(标量)而不是速度(向量)是守恒的。因此对于笛卡尔来说:一个移动的物体从另一个表面弹回来的时候,该物体的方向发生了改变但速率没有发生改变,运动的量应该没有发生改变。.
位置空间与动量空间和动量 · 动量和玻尔兹曼方程 · 查看更多 »
在三维空间裏,相对于某参考点,一个质点的位置,可以用位置向量来表示。設定一坐标系。參考这坐标系,质点的坐标,就是相对于這坐标系的原点的位置向量。在运动学裏,位置向量是描述质点运动的基本参量,是一个向量:有大小,也有方向。.
位置向量和位置空间与动量空间 · 位置向量和玻尔兹曼方程 · 查看更多 »
哈密顿力学是哈密顿于1833年建立的经典力学的重新表述,它由拉格朗日力学演变而来。拉格朗日力学是经典力学的另一表述,由拉格朗日于1788年建立。哈密顿力学与拉格朗日力学不同的是前者可以使用辛空间而不依赖于拉格朗日力学表述。关于这点请参看其数学表述。 适合用哈密顿力学表述的动力系统称为哈密顿系统。.
位置空间与动量空间和哈密顿力学 · 哈密顿力学和玻尔兹曼方程 · 查看更多 »
在數學與物理學中,相空間是一個用以表示出一系統所有可能狀態的空間;系統每個可能的狀態都有一相對應的相空間的點。.
位置空间与动量空间和相空間 · 玻尔兹曼方程和相空間 · 查看更多 »
上面的列表回答下列问题
- 什么位置空间与动量空间和玻尔兹曼方程的共同点。
- 什么是位置空间与动量空间和玻尔兹曼方程之间的相似性
位置空间与动量空间和玻尔兹曼方程之间的比较
位置空间与动量空间有35个关系,而玻尔兹曼方程有54个。由于它们的共同之处4,杰卡德指数为4.49% = 4 / (35 + 54)。
参考
本文介绍位置空间与动量空间和玻尔兹曼方程之间的关系。要访问该信息提取每篇文章,请访问: