之间位置向量和量子力学相似
位置向量和量子力学有1共同点(的联盟百科): 基 (線性代數)。
基 (線性代數)
在线性代数中,基(basis)(也称为基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间\mathrm射出的线性变换f,可以查看这个变换作用在向量空间的一组基\mathfrak上的效果。掌握了f(\mathfrak),就等于掌握了f对\mathrm中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。.
上面的列表回答下列问题
- 什么位置向量和量子力学的共同点。
- 什么是位置向量和量子力学之间的相似性
位置向量和量子力学之间的比较
位置向量有19个关系,而量子力学有193个。由于它们的共同之处1,杰卡德指数为0.47% = 1 / (19 + 193)。
参考
本文介绍位置向量和量子力学之间的关系。要访问该信息提取每篇文章,请访问: