徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

伽馬射線天文學和高能天文學

快捷方式: 差异相似杰卡德相似系数参考

伽馬射線天文學和高能天文學之间的区别

伽馬射線天文學 vs. 高能天文學

伽馬射線天文學是指以伽馬射線研究宇宙的天文學分支。伽馬射線是可穿透整個宇宙的電磁波中最高能量的波段,也是電磁波譜中波長最短的部分。 伽馬射線可由太空中的超新星、正電子湮滅、黑洞形成、甚至是放射衰變產生。例如超新星SN 1987A就發射了來自超新星爆炸的放射性產物鈷56釋放的伽馬射線。大多數天體釋放的伽馬射線一般認為並非來自放射衰變,而是和X射线天文学一樣來自加速的電子、電子和正電子作用(但因為能量較高而產生伽馬射線)。. 能天文學是研究天體所釋放的高能量電磁波的一個天文學分支。高能天文學包含伽馬射線天文學、X射线天文学和極紫外線天文學;並且也研究微中子和宇宙射線。而這些物理現象的研究也常被稱為高能天文物理學。.

之间伽馬射線天文學和高能天文學相似

伽馬射線天文學和高能天文學有(在联盟百科)8共同点: 宇宙線国际伽玛射线天体物理实验室高能立體視野望遠鏡费米伽玛射线空间望远镜超新星黑洞電磁波X射线天文学

宇宙線

宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.

伽馬射線天文學和宇宙線 · 宇宙線和高能天文學 · 查看更多 »

国际伽玛射线天体物理实验室

国际伽玛射线天体物理实验室(International Gamma-Ray Astrophysics Laboratory,缩写为INTEGRAL)是欧洲宇航局研制的伽玛射线天文卫星,于2002年10月17日在俄罗斯位于哈萨克斯坦境内的拜科努尔航天中心用质子号火箭发射升空,运行在近地点9,000公里、远地点155,000公里的椭圆轨道上。该卫星是美国宇航局康普顿伽玛射线天文台的继任者,主要工作是在软X射线波段进行巡天,并获取伽玛射线源的高分辨率图像。卫星上同时安装了X射线望远镜和光学望远镜,以便对目标进行多波段联合观测。 国际伽玛射线天体物理实验室的卫星平台采用了与XMM-牛顿卫星相同的构造,这样做的好处是节省了成本。卫星上携带的主要科学仪器有:.

伽馬射線天文學和国际伽玛射线天体物理实验室 · 国际伽玛射线天体物理实验室和高能天文學 · 查看更多 »

高能立體視野望遠鏡

能立體視野望遠鏡(High Energy Stereoscopic System 或 H.E.S.S.)是新世代的大氣契倫可夫影像望遠鏡(IACT)系統,用來研究能量從100G至1TeV,來自宇宙的γ射線。縮寫被選擇用來紀念開啟宇宙線觀測的維克托·赫斯。 這個名稱也強調望遠鏡的兩個主要特點,一是用幾架望遠鏡在不同的視角下同時觀測大氣簇射,二是望遠鏡的組合可以成為一個大的系統,可以有效的增加觀測γ射線的面積。H.E.S.S.允許在探索蟹狀星雲的γ射線時,可以分辨出數千個不同流量的強度。 H.E.S.S.座落在西南菲納米比亞,靠近Gamsberg的Cranz家族農場,是一個光學品質絕佳的場所。H.E.S.S.計畫第一階段有4架望遠鏡,在2002年開始運作,在2003年12月4架望遠鏡都開始運作。 在2004年,H.E.S.S.是首先嘗試IACT解析出空間中來自宇宙的γ射線來源。 在2005年,H.E.S.S.宣布找到了8個新的高能γ射線源,使已知的來源數量加倍。有兩個這樣的來源不能與已知的超新星殘骸或波霎對應,增加了新物理和存在一些"暗天體"的可能性。.

伽馬射線天文學和高能立體視野望遠鏡 · 高能天文學和高能立體視野望遠鏡 · 查看更多 »

费米伽玛射线空间望远镜

費米伽瑪射線太空望遠鏡(Fermi Gamma-ray Space Telescope,原名Gamma-ray Large Area Space Telescope, GLAST,大面積伽瑪射線太空望遠鏡)是在地球低軌道的伽馬射線天文學太空望遠鏡。此望遠鏡是用來進行大面積巡天以研究天文物理或宇宙論現象,如活躍星系核、脈衝星、其他高能輻射來源和暗物質。另外,該衛星搭載的伽瑪射線爆監視系統(Gamma-ray Burst Monitor, GBM)可用來研究伽瑪射線暴。 GLAST在格林尼治標準時間2008年6月11日16:05由Delta II 7920-H火箭發射。本任務是由美國國家航空暨太空總署、美國能源部、德國、法國、義大利、日本、瑞典政府機關聯合執行。NASA宣布2008年8月2日公開徵求GLAST一個可以「讓大眾注意與喚起對伽馬射線天文學和高能天文學重視」的新名字。.

伽馬射線天文學和费米伽玛射线空间望远镜 · 费米伽玛射线空间望远镜和高能天文學 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

伽馬射線天文學和超新星 · 超新星和高能天文學 · 查看更多 »

黑洞

黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.

伽馬射線天文學和黑洞 · 高能天文學和黑洞 · 查看更多 »

電磁波

#重定向 电磁辐射.

伽馬射線天文學和電磁波 · 電磁波和高能天文學 · 查看更多 »

X射线天文学

X射线天文学是以天体的X射线辐射为主要研究手段的天文学分支。X射线天文学中常以电子伏特(eV)表示光子的能量,观测对象为0.1keV到100keV的X射线。其中又将0.1keV-10keV的X射线称为软X射线,10keV-100keV称为硬X射线。由于X射线属于电磁波谱的高能端,因此X射线天文学与伽玛射线天文学同称为高能天体物理学。 宇宙中辐射X射线的天体包括X射线双星、脉冲星、伽玛射线暴、超新星遗迹、活动星系核、太阳活动区,以及星系团周围的高温气体等等。由于地球大气层对于X射线是不透明的,只能在高空或者大气层以外观测天体的X射线辐射,因此空间天文卫星是X射线天文学的主要工具。.

X射线天文学和伽馬射線天文學 · X射线天文学和高能天文學 · 查看更多 »

上面的列表回答下列问题

伽馬射線天文學和高能天文學之间的比较

伽馬射線天文學有44个关系,而高能天文學有21个。由于它们的共同之处8,杰卡德指数为12.31% = 8 / (44 + 21)。

参考

本文介绍伽馬射線天文學和高能天文學之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »