我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

伯努利双纽线和焦點 (幾何)

快捷方式: 差异相似杰卡德相似系数参考

伯努利双纽线和焦點 (幾何)之间的区别

伯努利双纽线 vs. 焦點 (幾何)

在数学中, 伯努利双纽线是由平面直角坐标系中的以下方程定义的平面代数曲线 : 曲线的形状类似于打横的阿拉伯数字 8 或者无穷大的符号 \infty,屬於双纽线。 关于伯努利双纽线的描述首见于1694年,雅各布·伯努利将其作为椭圆的一种类比来处理。椭圆是由到两个定点距离之和为定值的点的轨迹。而卡西尼卵形线则是由到两定点距离之乘积为定值的点的轨迹。当此定值使得轨迹经过两定点的中点时,轨迹便为伯努利双纽线。 伯努利将这种曲线称为lemniscus, 为拉丁文中“悬挂的丝带”之意。 伯努利双纽线是双曲线关于圆心在双曲线中心的圆的反演图形。. 在几何学上,焦點是指建構曲線中的一些特殊點。例如用一個或二個焦點可以定義圓錐曲線,分別為圓(一個焦點)、橢圓(二個焦點)、拋物線(一個焦點和一條線)及雙曲線(二個焦點),此外,有二個焦點可以定義卡西尼卵形线及,二個以上的焦點可以定義。.

之间伯努利双纽线和焦點 (幾何)相似

伯努利双纽线和焦點 (幾何)有(在联盟百科)3共同点: 卡西尼卵形线双曲线椭圆

卡西尼卵形线

卡西尼卵形线,是平面内到两个定点的距离之积为常数的点的轨迹,是环面曲线的一种。也就是说,如果我们定义dist(a,b)为从点a到点b的距离,则卡西尼卵形线上的所有点都满足以下的方程: 其中b是常数。 q1和q2称为卵形线的焦点。 假设q1是点(a,0),q2是点(-a,0),则曲线的方程为: 或 以及 极坐标系中的方程为: 卵形线的形状与比值b/a有关。如果b/a大于1,则轨迹是一条闭曲线。如果b/a小于1,则轨迹是两条不相连的闭曲线。如果b/a等于1,则是伯努利双扭线。.

伯努利双纽线和卡西尼卵形线 · 卡西尼卵形线和焦點 (幾何) · 查看更多 »

双曲线

在数学中,双曲线(ὑπερβολή,意思是超过、超出)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。 它还可以定义为与两个固定的点(称为焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还称为双曲线的半实轴。焦点位于贯轴上,它们的中间点称为中心。 从代数上说,双曲线是在笛卡尔平面上由如下方程定义的曲线 使得B^2>4AC,这裡的所有系数都是实数,并存在定义在双曲线上的点对(x,y)的多于一个的解。 注意在笛卡尔坐标平面上两个互为倒数的变量的图像是双曲线。.

伯努利双纽线和双曲线 · 双曲线和焦點 (幾何) · 查看更多 »

椭圆

在数学中,椭圆是平面上到两个固定点的距离之和为常数的点之轨迹。 根據該定義,可以用手繪橢圓:先準備一條線,將這條線的兩端各綁在固定的點上(這兩個點就當作是橢圓的兩個焦點,且距離小於線長);取一支筆,用筆尖将線繃緊,這時候兩個點和筆就形成了一個三角形(的兩邊);然後左右移動筆尖拉著線開始作圖,持續地使線繃緊,最後就可以完成一個橢圓的圖形了。.

伯努利双纽线和椭圆 · 椭圆和焦點 (幾何) · 查看更多 »

上面的列表回答下列问题

伯努利双纽线和焦點 (幾何)之间的比较

伯努利双纽线有18个关系,而焦點 (幾何)有19个。由于它们的共同之处3,杰卡德指数为8.11% = 3 / (18 + 19)。

参考

本文介绍伯努利双纽线和焦點 (幾何)之间的关系。要访问该信息提取每篇文章,请访问: