我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

伯努利分布和期望值

快捷方式: 差异相似杰卡德相似系数参考

伯努利分布和期望值之间的区别

伯努利分布 vs. 期望值

伯努利分布(Bernoulli distribution,又名两点分布或者0-1分布,是一個離散型概率分布,為紀念瑞士科學家雅各布·伯努利而命名。)若伯努利試驗成功,則伯努利隨机變-zh-hans:量; zh-hant:數;-取值為1。若伯努利試驗失敗,則伯努利隨机變-zh-hans:量; zh-hant:數;-取值為0。記其成功概率為p (0p1),失敗-zh-hans:概;zh-hk:機;zh-tw:機;-率為q. 在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合裡。) 例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下: \operatorname(X)&.

之间伯努利分布和期望值相似

伯努利分布和期望值有(在联盟百科)5共同点: 实数随机变量概率分布概率论方差

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

伯努利分布和实数 · 实数和期望值 · 查看更多 »

随机变量

給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.

伯努利分布和随机变量 · 期望值和随机变量 · 查看更多 »

概率分布

概率分布(Wahrscheinlichkeitsverteilung,probability distribution)或簡稱分布,是概率論的一個概念。使用時可以有以下兩種含義:.

伯努利分布和概率分布 · 期望值和概率分布 · 查看更多 »

概率论

概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).

伯努利分布和概率论 · 期望值和概率论 · 查看更多 »

方差

方差(Variance),應用數學裡的專有名詞。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二階中心動差,恰巧也是它的二阶累积量。這裡把複雜說白了,就是將各個誤差將之平方(而非取絕對值,使之肯定為正數),相加之後再除以總數,透過這樣的方式來算出各個數據分佈、零散(相對中心點)的程度。繼續延伸的話,方差的算术平方根称为该随机变量的标准差(此為相對各個數據點間)。.

伯努利分布和方差 · 方差和期望值 · 查看更多 »

上面的列表回答下列问题

伯努利分布和期望值之间的比较

伯努利分布有11个关系,而期望值有17个。由于它们的共同之处5,杰卡德指数为17.86% = 5 / (11 + 17)。

参考

本文介绍伯努利分布和期望值之间的关系。要访问该信息提取每篇文章,请访问: