我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

价键理论和分子轨道

快捷方式: 差异相似杰卡德相似系数参考

价键理论和分子轨道之间的区别

价键理论 vs. 分子轨道

价键理论(Valence bond theory,VB理论)是一种获得薛定谔方程近似解的处理方法,又称为电子配对法。价键理论与分子轨道理论是研究分子体系的两种量子力学方法。它是历史上最早发展起来的处理多个化学键分子的量子力学理论。价键理论主要描述分子中的共价键及共价结合,核心思想是电子配对形成定域化学键。. 分子軌域(Molecular orbital, MO)是化學中用以描述分子中電子的波動特性的函數。這個函數可以計算出化學和物理性質,例如在任意一個特定區域找到電子的機率。「軌域」一詞由羅伯特·桑德森·馬利肯於1932年提出,為「單電子軌域波函數」(one-electron orbital wave function)的簡稱。從基本層面上來說,它用於描述該函數具有顯著振幅的空間區域。分子軌域通常由分子中的個別原子提供的原子軌域、混成軌域,或者其他原子團的分子軌域結合而成。這些可以由哈特里-福克方程或自洽场方法(SCF)量化計算。 分子軌域可以用來表示分子中佔有該軌域的電子可能出現的區域。分子軌域由原子軌域結合而成,其中原子軌域預測了原子中電子的位置。分子軌域可以具體說明分子的电子排布:一個或一對電子的空間分佈和它(們)的能量。分子軌域通常會以原子軌域線性組合(LCAO-MO法)表示,尤其是在進行定性或近似分析的時候。它們的寶貴之處在於對分子鍵結提供了簡單的模型,使之能透過分子軌域理論了解。現今大多數用於計算化學的方法由計算系統的MO開始。分子軌域描述一個電子在原子核產生的電場中的表現,以及與其他電子的平均分佈。根據包立不相容原理,兩個電子佔據相同軌域時,必須具有相反的自旋。這注定只是一個近似值,能夠高度精準描述的分子電子波函數並沒有軌域(參:組態相互作用方法)。 该概念首先由弗里德里希·洪德和罗伯特·桑德森·马利肯在1927-1928年引入。 电子在分子中的空间运动状态可以用分子轨道波函数(ψ,薛定谔方程的数学解)描述,借助Hartree-Fock方程或自洽场方法可对其作定量近似。 定性上看,分子轨道由原子轨道线性组合(LCAO-MO法)获得,组合后的分子轨道数目与组合前的原子轨道数目相等,經過鍵結與反鍵結的作用後,分子軌域能量高低重新排列。 -->.

之间价键理论和分子轨道相似

价键理论和分子轨道有(在联盟百科)8共同点: 原子轨道原子轨道线性组合分子分子轨道理论电子薛定谔方程量子化学混成軌域

原子轨道

原子軌域(atomorbital;atomic orbital),又稱軌態,是以數學函數描述原子中電子似波行為陳藝菁、張祖辛,,國科會高瞻計畫資源平台。2010年12月11日查閱。。此波函數可用來計算在原子核外的特定空間中,找到原子中電子的機率,並指出電子在三維空間中的可能位置。「軌域」便是指在波函數界定下,電子在--空間出現機率較大的區域。具體而言,原子軌域是在環繞著一個原子的許多電子(電子雲)中,個別電子可能的量子態,並以軌域波函數描述。 現今普遍公認的原子結構是波耳氫原子模型:電子像行星,繞著原子核(太陽)運行。然而,電子不能被視為形狀固定的固體粒子,原子軌域也不像行星的橢圓形軌道。更精確的比喻應是,大範圍且形狀特殊的「大氣」(電子),分布於極小的星球(原子核)四周。只有原子中存在唯一電子時,原子軌域才能精準符合「大氣」的形狀。當原子中有越來越多電子時,電子越傾向均勻分布在原子核四周的空間體積中,因此「電子雲」越傾向分布在特定球形區域內(區域內電子出現機率較高)。 在原子物理學的運算中,複雜的電子函數常被簡化成較容易的原子軌域函數組合。雖然多電子原子的電子並不能以「一或二個電子之原子軌域」的理想圖像解釋,它的波函數仍可以分解成原子軌域函數組合,以原子軌域理論進行分析;就像在某種意義上,由多電子原子組成的電子雲在一定程度上仍是以原子軌域「構成」,每個原子軌域內只含一或二個電子。.

价键理论和原子轨道 · 分子轨道和原子轨道 · 查看更多 »

原子轨道线性组合

原子轨域线性组合(Linear combination of atomic orbitals,或者简写为LCAO),是量子化学中用于求解分子轨域的一种方法,这种方法是通过对原子轨域进行线性叠加来构造分子轨域。因为它属于分子轨域方法的一种,所以又称原子轨域线性组合的分子轨域方法,或者叫LCAO-MO。它于1929年由Sir John Lennard-Jones引入用于描述元素周期表第一行上原子构成的双原子分子的成键,并且经由Ugo Fano进行了扩展。 在量子力学里,原子的电子组态由波函数来描述。从数学上来看,这些波函数构成了函数基组。在化学反应过程中,轨道波函数会发生改变,根据原子所参与形成的化学键的类型,电子云的形状会相应改变。 LCAO的数学形式为: 其中\Psi_i为第i条分子轨道,它被表示为n个原子基函数(原子轨道)\varphi_j的线性叠加。系数c_表示了第j条原子轨道对该分子轨道i的贡献大小。 作为基函数的原子轨道\varphi_j通常是在(核)中心场作用下的单电子波函数。所使用的基函数通常是类氢原子,因为类氢原子波函数已知有解析的表达式。当然,基函数也可以选择如高斯函数的其他形式。 通过变分法求系统总能量的最低值,人们可以获得线性展开式前每项的系数c_。这种定量方法称为Hartee-Fock方法。但随着计算化学的发展,人们一般不用LCAO做波函数的实际优化,只用其作定性估测,以衡量或预测其他计算方法的结果。.

价键理论和原子轨道线性组合 · 分子轨道和原子轨道线性组合 · 查看更多 »

分子

分子(molecule)是一种构成物质的粒子,呈电中性、由两個或多個原子組成,原子之間因共價鍵而鍵結。能够單獨存在、保持物质的化學性質;由分子組成的物質叫分子化合物。 一個分子是由多個原子在共價鍵中通过共用電子連接一起而形成。它可以由相同的化學元素构成,如氧氣分子 O2;也可以由不同的元素构成,如水分子 H2O。若原子之間由非共價鍵的化學鍵(如離子鍵)所結合,一般不會視為是單一分子。 在不同的領域中,分子的定義也會有一點差異:在热力学中,构成物质的分子(如水分子)、原子(如碳原子)、离子(如氯离子)等在热力学上的表现性质都是一样的,因此,都统称为分子;在氣體動力論中,分子是指任何构成气体的粒子,此定義下,單原子的惰性氣體也可視為是分子。而在量子物理、有機化學及生物化學中,多原子的離子(如硫酸根)也可以視為是一個分子。 分子可根据其构成原子的数量(原子數)分为单原子分子,双原子分子等。 在氣体中,氫分子(H2)、氮分子(N2)、氧分子(O2)、氟分子(F2)和氯分子(Cl2)的原子數是2;固体元素中,黃磷(P4)原子數是4,硫(S8)的是8。所以,氬(Ar)是單原子的分子,氧氣(O2)是雙原子的,臭氧(O3)則是三原子的。 許多常見的有機物質都是由分子所組成的,海洋和大氣中大部份也是分子。但地球上主要的固體物質,包括地函、地殼及地核中雖也是由化學鍵鍵結,但不是由分子所構成。在離子晶體(像鹽)及共價晶體有反覆出現的晶体结构,但也無法找到分子。固態金屬是用金屬鍵鍵結,也有其晶体结构,但也不是由分子組成。玻璃中的原子之間依化學鍵鍵結,但是既沒有分子的存在,其中也沒有類似晶體反覆出現的晶体结構。.

价键理论和分子 · 分子和分子轨道 · 查看更多 »

分子轨道理论

分子轨道理论(),簡稱MO理论,是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的了解,即认为分子中的电子围绕整个分子运动。 计算化学中常以原子轨道线性组合近似来计算分子轨道波函数: 式中的cij系数可由将等式代入薛定谔方程以及应用变分原理求得。简单地讲,该方法意即,分子轨道由原子轨道组合而成。原子轨道波函数各乘以某一系数相加或相减,得到分子轨道波函数。组合时原子轨道对分子轨道的贡献体现在系数上,组合前后轨道总数不变。 利用分子轨道理论与价键理论通常只是从一个问题的两个方面去看问题,常常会得到相同的结论。只是有时分子轨道理论的思想与计算过于复杂,在研究简单问题时,价键理论反而更显得简单明了。或者说,价键理论对于分子定态的性质(键长,键角等)的解释和分子轨道理论相近,而分子轨道理论在研究和电子激发相关的性质时(分子颜色,光电子能谱等)更为有效。.

价键理论和分子轨道理论 · 分子轨道和分子轨道理论 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

价键理论和电子 · 分子轨道和电子 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

价键理论和薛定谔方程 · 分子轨道和薛定谔方程 · 查看更多 »

量子化学

量子化学是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理学与量子化学的标准之一。目前认为最早的量子化学计算是1927年布劳(Ø.Burrau)对离子以及同年瓦尔特·海特勒和弗里茨·伦敦对H2分子的计算,开创量子化学这一個交叉学科。经过近八十年发展之后,量子化学已经成为化学家们广泛应用的一种理论方法。.

价键理论和量子化学 · 分子轨道和量子化学 · 查看更多 »

混成軌域

混成軌域(Hybrid orbital)是指原子軌域經混成(hybridization)後所形成的能量简并的新轨道,用以定量描述原子間的鍵結性質。與價層電子對互斥理論可共同用來解釋分子軌域的形狀。混成概念是萊納斯·鮑林於1931年提出。.

价键理论和混成軌域 · 分子轨道和混成軌域 · 查看更多 »

上面的列表回答下列问题

价键理论和分子轨道之间的比较

价键理论有40个关系,而分子轨道有23个。由于它们的共同之处8,杰卡德指数为12.70% = 8 / (40 + 23)。

参考

本文介绍价键理论和分子轨道之间的关系。要访问该信息提取每篇文章,请访问: