我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

代數獨立和超越數

快捷方式: 差异相似杰卡德相似系数参考

代數獨立和超越數之间的区别

代數獨立 vs. 超越數

在抽象代數裡,一個體L的子集S若被稱做代數獨立於一子體K的話,表示S內的元素都不符合係數包含在K內的非平凡多項式。這表示任何以S內元素排成的有限序列\alpha_1,\cdots,\alpha_n(沒有兩個是一樣的)和任一係數包含在K的非零多項式P(x_1,\cdots,x_n),都會得到: 特別的是,單元素集合\若是代數獨立於K的話,若且唯若\alpha會是K內的超越數或超越函數。一般而言,和於K代數獨立集合的所有元素也必然會是K內的超越數或超越函數,但反之則不必然。 舉例來說,實數\mathbb的子集\並不代數獨立於有理數\mathbb,當存在一非零多項式: x_1代入\sqrt和x_2代入2\pi+1時會變成0。 林德曼-魏爾斯特拉斯定理時常用做證明某些函數會代數獨立於有理數:當\alpha_1,\cdots,\alpha_n為線性獨立於有理數的代數數時,\mbox^,\cdots,\mbox^便會代數獨立於有理數。 現在依然沒有證明出集合\是否代數獨立於有理數。在1996年證明了\是代數獨立於有理數的。 給定一體擴張L/K,我們可以利用佐恩引理來證明總是存在一L的最大代數獨立子集於K。甚至,所有個最大代數獨立子集都會有相同的基數,稱之為此一體擴張的超越次數。 Category:域论. 在數論中,超越數是指任何一個不是代數數的无理数。只要它不是任何一個有理係數代數方程的根,它即是超越數。最著名的超越數是e以及π。.

之间代數獨立和超越數相似

代數獨立和超越數有(在联盟百科)3共同点: 多項式代數數有理数

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

代數獨立和多項式 · 多項式和超越數 · 查看更多 »

代數數

代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.

代數數和代數獨立 · 代數數和超越數 · 查看更多 »

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

代數獨立和有理数 · 有理数和超越數 · 查看更多 »

上面的列表回答下列问题

代數獨立和超越數之间的比较

代數獨立有15个关系,而超越數有36个。由于它们的共同之处3,杰卡德指数为5.88% = 3 / (15 + 36)。

参考

本文介绍代數獨立和超越數之间的关系。要访问该信息提取每篇文章,请访问: