我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

代數曲線和賦值

快捷方式: 差异相似杰卡德相似系数参考

代數曲線和賦值之间的区别

代數曲線 vs. 賦值

在代數幾何中,一條代數曲線是一維的代數簇。最典型的例子是射影平面\mathbb^2上由一個齊次多項式f(X,Y)定義的零點。. 在代数中,赋值是域元素的阶(多少)或元素重复度一个度量。推广到交换代数,就是对复分析中极点,零点重复度度量,推广到代数数论中的代数整数整性的度量,在代数几何中也有类似概念,一个域与它的赋值被称为赋值域。.

之间代數曲線和賦值相似

代數曲線和賦值有(在联盟百科)5共同点: 代数几何函數域複分析黎曼曲面拉開

代数几何

代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:.

代数几何和代數曲線 · 代数几何和賦值 · 查看更多 »

函數域

在代數幾何中,一個整概形 X 的函數域 K_X 由 X 上的有理函數組成;對於一般的概形,相應的對象是有理函數層。雙有理幾何研究的便是由 K_X 所決定的幾何性質。.

代數曲線和函數域 · 函數域和賦值 · 查看更多 »

複分析

複變分析是研究複變函數,特別是亞純函數和複變解析函數的數學理論。 研究中常用的理论、公式以及方法包括柯西积分定理、柯西积分公式、留数定理、洛朗级数展开等。複變分析的应用领域较为广泛,在其它数学分支和物理学中也起着重要的作用。包括数论、应用数学、流体力学、热力学和电动力学。.

代數曲線和複分析 · 複分析和賦值 · 查看更多 »

黎曼曲面

数学上,特别是在复分析中,一个黎曼曲面是一个一维复流形。黎曼曲面可以被視为是一个复平面的变形版本:在每一点局部看来,他们就像一片复平面,但整体的拓扑可能极为不同。例如,他们可以看起来像球或是环,或者两个页面粘在一起。 黎曼曲面的精髓在于在曲面之间可以定义全纯函数。黎曼曲面现在被认为是研究这些函数的整体行为的自然选择,特别是像平方根和自然对数这样的多值函數。 每个黎曼曲面都是二维实解析流形(也就是曲面),但它有更多的结构(特别是一个複結構),因为全純函数的无歧义的定义需要用到这些结构。一个实二维流形可以变成为一个黎曼曲面(通常有几种不同的方式)当且仅当它是可定向的。所以球和环有複結構,但是莫比乌斯带,克莱因瓶和射影平面没有。 黎曼曲面的几何性质是最妙的,它们也给與其它曲线,流形或簇上的推广提供了直观的理解和动力。黎曼-罗赫定理就是这种影响的最佳例子。.

代數曲線和黎曼曲面 · 賦值和黎曼曲面 · 查看更多 »

拉開

在數學中,拉開(法文:éclatement,英文:blowing up)、單項變換或σ-過程是一種幾何的操作,代數幾何中的應用尤重。拉開是雙有理幾何的基本工具。對代數簇或複流形 M 上一點 Z 的拉開是將該點換為該點法叢的射影叢,或者具體地說是換為該點切空間的射影空間,從而得到拉開態射 \mathrm_Z: \tilde \rightarrow M,這是一個雙有理等價。對較高維子流形也能定義拉開。 當代代數幾何學將拉開視為對概形的內在操作,然而拉開也有外在的描述法,例如取一平面曲線,並對它所處的射影平面作某類變換;這是古典的進路,其想法至今仍反映於用語上。.

代數曲線和拉開 · 拉開和賦值 · 查看更多 »

上面的列表回答下列问题

代數曲線和賦值之间的比较

代數曲線有33个关系,而賦值有20个。由于它们的共同之处5,杰卡德指数为9.43% = 5 / (33 + 20)。

参考

本文介绍代數曲線和賦值之间的关系。要访问该信息提取每篇文章,请访问: