我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

代數數論和有理数

快捷方式: 差异相似杰卡德相似系数参考

代數數論和有理数之间的区别

代數數論 vs. 有理数

在數學中,代數數論是數論的一支,其中我們將「數」的概念延伸,以解決具體的數論問題。我們在代數數論中考慮代數數,這類數是有理係數多項式的根。與此相關的概念是數域,這是有理數域的有限擴張。在此框架下能推廣整數為代數整數,並研究一個數域裡的代數整數。 代數整數在加法、減法與乘法下構成一個環,但整數的許多性質並不能推廣到一般數域裡的代數整數上,其中一個例子是素因數分解的唯一性(又稱算術基本定理),這是十九世紀數學家試圖證明費馬大定理時遇到的主要阻礙,然而代數數論的應用不僅止於此。數學中一些較深入的理論有助於讓我們了解代數數與代數整數的性質——包括伽羅瓦理論、伽羅瓦上同調、類域論、表示理論與L-函數的相關理論等等。 數論中的許多問題可藉由「模 p」(其中 p 為素數)來研究。這套技術導向p進數的建構,而p進數是局部域的例子;局部域的研究運用了一些研究數域時的相同方法,但是通常更容易處理。一般數域上的陳述常與各個局部域上的相應陳述有關,例如哈瑟原理:「一個有理係數二次方程在有理數域上有解,若且唯若它在實數上及在每個素數 p 之 p進數域上有解」。這類結果往往被稱作局部-整體原理,其中「局部」意指局部域,而「整體」意指數域。. 数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

之间代數數論和有理数相似

代數數論和有理数有(在联盟百科)9共同点: 子集度量代數數等价类素数P進數数学整数

域(field)可以指:.

代數數論和域 · 域和有理数 · 查看更多 »

子集

子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.

代數數論和子集 · 子集和有理数 · 查看更多 »

度量

度量是指對於一個物體或是事件的某個性質給予一個數字,使其可以和其他物體或是事件的相同性質比較。度量可以是對一物理量(如長度、尺寸或容量等)的估計或測定,也可以是其他較抽象的特質。 度量通常以一標準或度量衡表示。度量以數字單位的標準來表示,如距離即以多少英里或多少公里來表示。度量是大部份自然科學、技術、及其他社會科學中定量研究的基礎。 度量的過程為估計一數量的多寡和相同類型(如長度、時間、重量等)一單位的多寡之間的比例。度量即為此過程的結果,表示為數字加上一個單位,其中實數為估計的比例。如9公尺,其便為物體長度和長度單位,即公尺之間的比例。不像計數和整數個數個物體一般地可精確知道,每一個度量都是個存在些許不確定性的估計。度量量包括了測量尺度(包括量值)、计量单位及不确定性。透過度量可以比較不同的量測,並且減少誤會。有關度量的科學稱為计量学。.

代數數論和度量 · 度量和有理数 · 查看更多 »

代數數

代數數是代数与数论中的重要概念,指任何整係數多项式的复根。 所有代数数的集合构成一个域,称为代数数域(与定义为有理数域的有限扩张的代数数域同名,但不是同一个概念),记作\mathcal或\overline,是复数域\mathbb的子域。 不是代数数的实数称为超越数,例如圆周率。.

代數數和代數數論 · 代數數和有理数 · 查看更多 »

等价类

在数学中,假設在一个集合X上定義一个等价关系(用 \sim來表示),则X中的某個元素a的等价类就是在X中等价于a的所有元素所形成的子集: 等价类的概念有助于从已经构造了的集合构造新集合。在X中的给定等价关系 \sim的所有等价类的集合表示为X/ \sim并叫做X除以\sim的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果X是有限的并且等价类都是等势的,则X/ \sim的序是X的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合X。 对于任何等价关系,都有从X到X/ \sim的一个规范投影映射\pi,给出为\pi(x).

代數數論和等价类 · 有理数和等价类 · 查看更多 »

素数

質--數(Prime number),又称素--数,指在大於1的自然数中,除了1和該数自身外,無法被其他自然数整除的数(也可定義為只有1與該數本身两个正因数的数)。大於1的自然數若不是質數,則稱之為合數。例如,5是個質數,因為其正因數只有1與5。而6則是個合數,因為除了1與6外,2與3也是其正因數。算術基本定理確立了質數於數論裡的核心地位:任何大於1的整數均可被表示成一串唯一質數之乘積。為了確保該定理的唯一性,1被定義為不是質數,因為在因式分解中可以有任意多個1(如3、1×3、1×1×3等都是3的有效因數分解)。 古希臘數學家歐幾里得於公元前300年前後證明有無限多個質數存在(欧几里得定理)。現時人們已發現多種驗證質數的方法。其中試除法比較簡單,但需時較長:設被測試的自然數為n,使用此方法者需逐一測試2與\sqrt之間的整數,確保它們無一能整除n。對於較大或一些具特別形式(如梅森數)的自然數,人們通常使用較有效率的演算法測試其是否為質數(例如277232917-1是直至2017年底為止已知最大的梅森質數)。雖然人們仍未發現可以完全區別質數與合數的公式,但已建構了質數的分佈模式(亦即質數在大數時的統計模式)。19世紀晚期得到證明的質數定理指出:一個任意自然數n為質數的機率反比於其數位(或n的對數)。 許多有關質數的問題依然未解,如哥德巴赫猜想(每個大於2的偶數可表示成兩個素數之和)及孿生質數猜想(存在無窮多對相差2的質數)。這些問題促進了數論各個分支的發展,主要在於數字的解析或代數方面。質數被用於資訊科技裡的幾個程序中,如公鑰加密利用了難以將大數分解成其質因數之類的性質。質數亦在其他數學領域裡形成了各種廣義化的質數概念,主要出現在代數裡,如質元素及質理想。.

代數數論和素数 · 有理数和素数 · 查看更多 »

P進數

进数是数论中的概念,也称作局部数域,是有理数域拓展成的完备数域的一种。这种拓展与常见的有理数域\mathbb到实数域\mathbb、复数域\mathbb的数系拓展不同,其具体在于所定义的“距离”概念。进数的距离概念建立在整数的整除性质上。给定素数,若两个数之差被的高次幂整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使进数理论成为了数论研究中的有力工具。例如安德鲁·怀尔斯对费马大定理的证明中就用到了进数理论。 进数的概念首先由库尔特·亨泽尔于1897年构思并刻画,其发展动机主要是试图将幂级数方法引入到数论中,但现今进数的影响已远不止于此。例如可以在进数上建立p进数分析,将数论和分析的工具结合起来。此外进数在量子物理学、认知科学、计算机科学等领域都有应用。.

P進數和代數數論 · P進數和有理数 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

代數數論和数学 · 数学和有理数 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

代數數論和整数 · 整数和有理数 · 查看更多 »

上面的列表回答下列问题

代數數論和有理数之间的比较

代數數論有52个关系,而有理数有45个。由于它们的共同之处9,杰卡德指数为9.28% = 9 / (52 + 45)。

参考

本文介绍代數數論和有理数之间的关系。要访问该信息提取每篇文章,请访问: