我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

代數擴張和域扩张

快捷方式: 差异相似杰卡德相似系数参考

代數擴張和域扩张之间的区别

代數擴張 vs. 域扩张

代数扩张是抽象代數中域扩张的一类。一個域擴張被稱作代數擴張,若且唯若中的每个元素都是某个以中元素为系数的非零多項式的根。反之則稱之为超越擴張。最簡單的代數擴張例子有:\mathbb/\mathbb、\mathbb(\sqrt)/\mathbb。. 域扩张(field extensions)是数学分支抽象代数之域论中的主要研究对象,基本想法是从一个基域开始以某种方式构造包含它的“更大”的域。域扩张可以推广为环扩张。.

之间代數擴張和域扩张相似

代數擴張和域扩张有(在联盟百科)7共同点: 域 (數學)同构向量空间多項式分裂域特征 (代数)有限域

域 (數學)

在抽象代数中,域(Field)是一种可進行加、減、乘和除(除了除以零之外,「零」即加法單位元素)運算的代數結構。域的概念是数域以及四则运算的推广。 域是环的一种。域和一般的环的区别在于域要求它的元素(除零元素之外)可以进行除法运算,这等价于说每个非零的元素都要有乘法逆元。體中的運算关于乘法是可交换的。若乘法運算沒有要求可交換則稱為除環(division ring)或skew field。.

代數擴張和域 (數學) · 域 (數學)和域扩张 · 查看更多 »

同构

在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.

代數擴張和同构 · 同构和域扩张 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

代數擴張和向量空间 · 向量空间和域扩张 · 查看更多 »

多項式

多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.

代數擴張和多項式 · 域扩张和多項式 · 查看更多 »

分裂域

在抽象代数中,一个系数域为\mathbb的多项式P(x)\,的分裂域(根域)是\mathbb的“最小”的一个扩域\mathbb,使得在其中P\,可以被分解为一次因式x-r_i\,的乘积,其中的r_i\,是\mathbb中元素。一个\mathbb上的多项式并不一定只有一个分裂域,但它所有的分裂域都是同构的:在同构意义上,\mathbb上的多项式的分裂域是唯一的。.

代數擴張和分裂域 · 分裂域和域扩张 · 查看更多 »

特征 (代数)

在数学中,环R的特征被定义为最小的正整数n使得 这里的na被定义为 如果不存在这样的n,R的特征被定义为0。R的特征经常指示为char(R)。 环R的特征可以等价的定义为唯一的自然数n使得nZ是映射1到1R的从Z到R的唯一的环同态的核。另一个等价的定义:R的特征是唯一的自然数n使得R包含同构于商环Z/nZ的子环。.

代數擴張和特征 (代数) · 域扩张和特征 (代数) · 查看更多 »

有限域

在数学中,有限域(finite field)或伽罗瓦域(Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素的域。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 为素数时,整数对 取模。 有限域的元素个数称为它的序。 有限域在许多数学和计算机科学领域的基础,包括数论、代数几何、伽羅瓦理論、有限幾何學、密码学和编码理论。.

代數擴張和有限域 · 域扩张和有限域 · 查看更多 »

上面的列表回答下列问题

代數擴張和域扩张之间的比较

代數擴張有10个关系,而域扩张有40个。由于它们的共同之处7,杰卡德指数为14.00% = 7 / (10 + 40)。

参考

本文介绍代數擴張和域扩张之间的关系。要访问该信息提取每篇文章,请访问: