我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

代数拓扑和拓扑学

快捷方式: 差异相似杰卡德相似系数参考

代数拓扑和拓扑学之间的区别

代数拓扑 vs. 拓扑学

代数拓扑(Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。. 在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.

之间代数拓扑和拓扑学相似

代数拓扑和拓扑学有(在联盟百科)17共同点: 基本群可定向性同倫同胚向量場平面微分流形覆疊空間貝蒂數连续函数范畴论邻域自由群流形数学曲面

基本群

在代數拓撲中,基本群(或稱龐加萊群)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。 基本群能用以研究兩個空間是否同胚,也能分類一個連通空間的覆疊空間(至多差一個同構)。 基本群的推廣之一是同倫群。.

代数拓扑和基本群 · 基本群和拓扑学 · 查看更多 »

可定向性

欧几里得空间R3中一个曲面S是可定向(orientable)的如果一个二维图形(比如)沿着曲面移动后回到起点不能使它看起来像它的镜像()。否则曲面是不可定向(non-orientable)的。 更确切地,应用于非嵌入曲面,一个曲面可定向如果不存在从二维球B与单位区间的乘积到曲面的连续函数f: B\times \to S,使得f(b,t).

代数拓扑和可定向性 · 可定向性和拓扑学 · 查看更多 »

同倫

在數學中,同倫(Homotopy)的概念在拓撲上描述了兩個對象間的「連續變化」。.

代数拓扑和同倫 · 同倫和拓扑学 · 查看更多 »

同胚

在拓扑学中,同胚(homeomorphism、topological isomorphism、bi continuous function)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构;也就是说,它们是保持给定空间的所有拓扑性质的映射。如果两个空间之间存在同胚,那么这两个空间就称为同胚的,从拓扑学的观点来看,两个空间是相同的。 大致地说,拓扑空间是一个几何物体,同胚就是把物体连续延展和弯曲,使其成为一个新的物体。因此,正方形和圆是同胚的,但球面和环面就不是。有一个笑话是说,拓扑学家不能区分咖啡杯和甜甜圈,这是因为一个足够柔软的甜甜圈可以捏成咖啡杯的形状(见图)。.

代数拓扑和同胚 · 同胚和拓扑学 · 查看更多 »

向量場

在向量分析中,向量場是把空間中的每一點指派到一個向量的映射。 物理學中的向量場有風場、引力場、電磁場、水流場等等。.

代数拓扑和向量場 · 向量場和拓扑学 · 查看更多 »

平面

数学上,一个平面(plane)就是基本的二维对象。直观的讲,它可以视为一个平坦的拥有无穷大面积的纸。多数几何、三角学和制图的基本工作都在二维进行,或者说,在平面上进行。 给定一个平面,可以引入一个直角坐标系以便在平面上用两个数字唯一的标示一个点,这两个数字也就是它的坐标。 在三维x-y-z坐标系中,可以将平面定义为一个方程的集: 其中a, b, c和d是实数,使得a, b, c不全为0。或者,一个平面也可以参数化的表述,作为所有具有u + s v + t w形式的点的集合,其中s和t取遍所有实数,而u, v 和w是给定用于定义平面的向量。 平面由如下组合的任何一个唯一确定.

代数拓扑和平面 · 平面和拓扑学 · 查看更多 »

微分流形

光滑流形(),或称-微分流形()、-可微流形(),是指一个被赋予了光滑结构的拓扑流形。一般的,如果不特指,微分流形或可微流形指的就是类的微分流形。可微流形在物理學中非常重要。特殊種類的可微流形構成了經典力學、廣義相對論和楊-米爾斯理論等物理理論的基礎。可以為可微流形開發微積分。可微流形上的微積分研究被稱為微分幾何。.

代数拓扑和微分流形 · 微分流形和拓扑学 · 查看更多 »

圆 (Circle),根據歐幾里得的《几何原本》定義,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:「平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。.

代数拓扑和圆 · 圆和拓扑学 · 查看更多 »

覆疊空間

在拓撲學中,拓撲空間X的覆疊空間是一對資料(Y,p),其中Y是拓撲空間,p: Y \to X是連續的滿射,並存在X的一組開覆盖 使得對每個U \in \mathcal,存在一個離散拓撲空間F及同胚:\phi_U: U \times F \simeq p^(U),而且p \circ \phi_U: U \times F \to U是對第一個坐標的投影。 滿足上述性質的p: Y \to X稱為覆疊映射。當X連通時,F的基數是個常數,稱為覆疊的次數或重數。 空間X的覆疊構成一個範疇\mathbf_X,其對象形如p: Y \to X,從p: Y \to X到q: Z \to X態射是連續映射f: Y \to Z,且q \circ f.

代数拓扑和覆疊空間 · 拓扑学和覆疊空間 · 查看更多 »

貝蒂數

在代數拓撲學中,拓撲空間之貝蒂數 b_0, b_1, b_2, \ldots 是一族重要的不變量,取值為非負整數或無窮大。直觀地看,b_0 是連通成份之個數,b_1 是沿著閉曲線剪開空間而保持連通的最大剪裁次數。更高次的 b_k 可藉同調群定義。 「貝蒂數」一詞首先由龐加萊使用,以義大利數學家恩里科·貝蒂命名。.

代数拓扑和貝蒂數 · 拓扑学和貝蒂數 · 查看更多 »

连续函数

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 举例来说,考虑描述一棵树的高度随时间而变化的函数h(t),那么这个函数是连续的(除非树被砍断)。又例如,假设T(P)表示地球上某一点P的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果M(t)表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数M(t)是不连续的。.

代数拓扑和连续函数 · 拓扑学和连续函数 · 查看更多 »

范畴论

疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.

代数拓扑和范畴论 · 拓扑学和范畴论 · 查看更多 »

邻域

在集合论中,邻域指以点 a 为中心的任何开区间,记作:U(a)。 在拓扑学和相关的数学领域中,邻域是拓扑空间中的基本概念。直觉上说,一个点的邻域是包含这个点的集合,並且該性質是外延的:你可以稍微“抖动”一下这个点而不离开这个集合。 这个概念密切关联于开集和内部的概念。.

代数拓扑和邻域 · 拓扑学和邻域 · 查看更多 »

自由群

在數學中,一個群 G 被稱作自由群,如果存在 G 的子集 S 使得 G 的任何元素都能唯一地表成由 S 中元素及其逆元組成之乘積(在此不論平庸的表法,例如 st^.

代数拓扑和自由群 · 拓扑学和自由群 · 查看更多 »

流形

流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.

代数拓扑和流形 · 拓扑学和流形 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

代数拓扑和数学 · 拓扑学和数学 · 查看更多 »

曲面

在数学(拓扑学)中,一个曲面(surface)是一个二维流形。三维空间中的例子有三维实心物体的边界。流体的表面,例如雨滴或肥皂泡是一种理想化的曲面。关于雪花的表面,它有很多精细的结构,超越了这个简单的数学定义。关于实际的曲面的资料,请参看表面张力,表面化学,曲面能量。.

代数拓扑和曲面 · 拓扑学和曲面 · 查看更多 »

上面的列表回答下列问题

代数拓扑和拓扑学之间的比较

代数拓扑有56个关系,而拓扑学有80个。由于它们的共同之处17,杰卡德指数为12.50% = 17 / (56 + 80)。

参考

本文介绍代数拓扑和拓扑学之间的关系。要访问该信息提取每篇文章,请访问: