我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

代数和莱因德数学纸草书

快捷方式: 差异相似杰卡德相似系数参考

代数和莱因德数学纸草书之间的区别

代数 vs. 莱因德数学纸草书

代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102. 莱因德数学纸草书(又譯作林德數學手卷;Rhind Mathematical Papyrus),也称阿姆士(Ahmose)纸草书,或者大英博物馆10057和10058号纸草书,是古埃及第二中间期时代(约前1650年)由僧侣阿姆士在纸草上抄写的一部数学著作,与莫斯科纸草书齐名,是最具代表性的古埃及数学原始文献之一。 这部纸草书总长525厘米,高33厘米,最初应该非法盗掘于底比斯的拉美西斯神庙附近。1858年为苏格兰收藏家莱因德购得,现藏大英博物馆。另有少量缺失部分1922年在纽约私人收藏中发现,现藏美国纽约布鲁克林博物馆。 根据阿姆士在前言中的叙述,内容抄自法老阿蒙涅姆赫特三世时期(前1860—前1814年)的另一部更早的著作。纸草书的内容分两部分,前面是一个分数表,后面是84个数学问题和一段无法理解的话(也称为问题85)。问题涉及素数、合数和完全数,算术,几何,调和平均数以及简单筛法等概念,其中还有对π的简单计算,所得值为3.1605。.

之间代数和莱因德数学纸草书相似

代数和莱因德数学纸草书有(在联盟百科)3共同点: 古埃及几何学算术

古埃及

古埃及(مصر القديمة)是位於非洲东北部尼罗河中下游地区的一段时间跨度近3000年的古代文明,开始于公元前32世纪左右时美尼斯统一上下埃及建立第一王朝,终止于公元前343年波斯再次征服埃及,雖然之後古埃及文化還有少量延續,但到公元以後的時代,古埃及已經徹底被異族文明所取代,在連象形文字也被人們遺忘後,古代史前社會留給後人的是宏偉的建築與無數謎團,1798年,拿破仑远征埃及,发现罗塞塔石碑,1822年法国学者商博良解读象形文字成功,埃及学才诞生,古埃及文明才重见天日。直到今日都還不斷被挖掘出來。 古埃及的居民是由北非的土著居民和来自西亚的遊牧民族塞姆人融合形成的多文化圈。約西元前6000年,因為地球軌道的運轉規律性變化、間冰期的高峰過去等客觀氣候因素,北非茂密的草原開始退縮,人們放棄游牧而開始尋求固定的水源以耕作,即尼羅河河谷一帶,公元前4千年后半期,此地逐渐形成国家,至公元前343年为止,共经历前王朝、早王朝、古王国、第一中间期、中王国、第二中间期、新王国、第三中间期、后王朝9个时期31个王朝的统治(参见“古埃及歷史”一节)。其中古埃及在十八王朝时(公元前15世纪)达到鼎盛,南部尼罗河河谷地带的上埃及的領域由現在的蘇丹到埃塞俄比亞,而北部三角洲地区的下埃及除了現在的埃及和部份利比亚以外,其東部邊界越過西奈半島直達迦南平原。杨洪强编著,《古埃及文明-全球史之四》,2005年 在社會制度方面,古埃及有自己的文字系统,完善的行政体系和多神信仰的宗教系统,其统治者称为法老,因此古埃及又称为法老时代或法老埃及江晓原,12宫与28宿:世界历史上的星占学,辽宁教育出版社,2005年5月,45-64 ISBN 7-5382-7184-8。古埃及的国土紧密分布在尼罗河周围的狭长地带,是典型的水力帝国。古埃及跟很多文明一樣,具有保存遺體的喪葬習俗,透過這些木乃伊的研究能一窺當時人們的日常生活,对古埃及的研究在学术界已经形成一门专门的学科,称为“埃及学”。 古埃及文明的产生和发展同尼罗河密不可分,如古希腊历史学家希罗多德所言:“埃及是尼罗河的赠礼。”古埃及时,尼罗河几乎每年都泛滥,淹没农田,但同时也使被淹没的土地成为肥沃的耕地。尼罗河还为古埃及人提供交通的便利,使人们比较容易的来往于河畔的各个城市之间。古埃及文明之所以可以绵延数千年而不间断,另一个重要的原因是其相对与外部世界隔绝的地理环境,古埃及北面和东面分别是地中海和红海,而西面则是沙漠,南面是一系列大瀑布,只有东北部有一个通道通过西奈半岛通往西亚。这样的地理位置,使外族不容易进入埃及,从而保证古埃及文明的穩定延续。相比较起来,周围相对开放的同时代的两河流域文明则经常被不同民族所主宰,兩者對後世所帶來的價值觀也完全不同。.

代数和古埃及 · 古埃及和莱因德数学纸草书 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

代数和几何学 · 几何学和莱因德数学纸草书 · 查看更多 »

算术

算術(arithmetic)是数学最古老且最簡單的一個分支,幾乎被每個人使用著,從日常生活上簡單的算數到高深的科学及工商业計算都會用到。一般而言,算術這一詞指的是記錄數字某些運算基本性質的数学分支。常用的运算有加法、減法、乘法、除法,有时候,更复杂的运算如指数和平方根,也包括在算术运算的范畴内。算术运算要按照特定规则来进行。 自然数、整数、有理数(以分數的形式)和实数(以十进制指数的形式)的运算主要是在小学和中学的时候学习。用百分比形式进行运算也主要是在这个时候学习。然而,在成人中,很多人使用计算器,计算机或者算盘来进行数学计算。 專業数学家有時會使用高等算術來指数论,但這不應該和初等算術相搞混。另外,算術也是初等代數的重要部份之一。.

代数和算术 · 算术和莱因德数学纸草书 · 查看更多 »

上面的列表回答下列问题

代数和莱因德数学纸草书之间的比较

代数有130个关系,而莱因德数学纸草书有24个。由于它们的共同之处3,杰卡德指数为1.95% = 3 / (130 + 24)。

参考

本文介绍代数和莱因德数学纸草书之间的关系。要访问该信息提取每篇文章,请访问: