我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

人工神经网络和统计学

快捷方式: 差异相似杰卡德相似系数参考

人工神经网络和统计学之间的区别

人工神经网络 vs. 统计学

人工神经网络(Artificial Neural Network,ANN),简称神经网络(Neural Network,NN)或類神經網絡,在机器学习和认知科学领域,是一种模仿生物神经网络(动物的中樞神經系統,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统,通俗的講就是具備學習功能。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分:. 统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

之间人工神经网络和统计学相似

人工神经网络和统计学有(在联盟百科)3共同点: 主成分分析非线性概率模型

主成分分析

在多元统计分析中,主成分分析(Principal components analysis,PCA)是一種分析、簡化數據集的技術。主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。由于主成分分析依赖所给数据,所以数据的准确性对分析结果影响很大。 主成分分析由卡爾·皮爾遜於1901年發明,用於分析數據及建立數理模型。其方法主要是通過對共變異數矩陣進行特征分解,以得出數據的主成分(即特征向量)與它們的權值(即特征值)。PCA是最簡單的以特征量分析多元統計分布的方法。其結果可以理解為對原數據中的方差做出解釋:哪一個方向上的數據值對方差的影響最大?換而言之,PCA提供了一種降低數據維度的有效辦法;如果分析者在原數據中除掉最小的特征值所對應的成分,那麼所得的低維度數據必定是最優化的(也即,這樣降低維度必定是失去訊息最少的方法)。主成分分析在分析複雜數據時尤為有用,比如人臉識別。 PCA是最简单的以特征量分析多元统计分布的方法。通常情况下,这种运算可以被看作是揭露数据的内部结构,从而更好的解释数据的变量的方法。如果一个多元数据集能够在一个高维数据空间坐标系中被显现出来,那么PCA就能够提供一幅比较低维度的图像,这幅图像即为在讯息最多的点上原对象的一个‘投影’。这样就可以利用少量的主成分使得数据的维度降低了。 PCA跟因子分析密切相关,并且已经有很多混合这两种分析的统计包。而真实要素分析则是假定底层结构,求得微小差异矩阵的特征向量。.

主成分分析和人工神经网络 · 主成分分析和统计学 · 查看更多 »

非线性

#重定向 非線性系統.

人工神经网络和非线性 · 统计学和非线性 · 查看更多 »

概率模型

概率模型(Statistical Model,也稱為Probabilistic Model)是用来描述不同随机变量之间关系的数学模型,通常情况下刻画了一个或多个随机变量之间的相互非确定性的概率关系。从数学上讲,该模型通常被表达为(Y,P),其中Y是观测集合用来描述可能的观测结果,P是Y对应的概率分布函数集合。若使用概率模型,一般而言需假设存在一个确定的分布P生成观测数据Y。因此通常使用统计推断的办法确定集合P中谁是数据产生的原因。 大多数统计检验都可以被理解为一种概率模型。例如,一个比较两组数据均值的学生t检验可以被认为是对该概率模型参数是否为0的检测。此外,检验与模型的另一个共同点则是两者都需要提出假设并且误差在模型中常被假设为正态分布。.

人工神经网络和概率模型 · 概率模型和统计学 · 查看更多 »

上面的列表回答下列问题

人工神经网络和统计学之间的比较

人工神经网络有50个关系,而统计学有81个。由于它们的共同之处3,杰卡德指数为2.29% = 3 / (50 + 81)。

参考

本文介绍人工神经网络和统计学之间的关系。要访问该信息提取每篇文章,请访问: