之间人工智能和遗传算法相似
人工智能和遗传算法有(在联盟百科)7共同点: 人工智能,神经网络,遗传编程,概率,模糊控制,机器人,最优化。
人工智能
人工智能(Artificial Intelligence, AI)亦稱機器智能,是指由人製造出來的機器所表現出來的智能。通常人工智能是指通過普通電腦程式的手段實現的人類智能技術。該詞也指出研究這樣的智能系統是否能夠實現,以及如何實現科學領域。同時如此,人類的數量開始收斂及功能逐漸被其取代。 一般教材中的定义领域是“智能主体(intelligent agent)的研究与设计”,智能主体是指一个可以观察周遭环境并作出行动以达致目标的系统。约翰·麦卡锡于1955年的定义是「制造智能机器的科学与工程。」 人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及範圍極廣。人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。 AI的核心问题包括建構能夠跟人類似甚至超越的推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。強人工智能目前仍然是该领域的长远目标。目前強人工智慧已經有初步成果,甚至在一些影像辨識、語言分析、棋類遊戲等等單方面的能力達到了超越人類的水平,而且人工智慧的通用性代表著,能解決上述的問題的是一樣的AI程式,無須重新開發算法就可以直接使用現有的AI完成任務,與人類的處理能力相同,但達到具備思考能力的統合強人工智慧還需要時間研究,比较流行的方法包括统计方法,计算智能和传统意义的AI。目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基於仿生學、認知心理學,以及基于概率论和经济学的演算法等等也在逐步探索當中。.
神经网络
经网络可以指:.
遗传编程
遗传编程或称基因编程,簡稱GP,是一种从生物演化过程得到灵感的自动化生成和选择计算机程序来完成用户定义的任务的技术。从理论上讲,人类用遗传编程只需要告诉计算机“需要完成什么”,而不用告诉它“如何去完成”,最终可能实现真正意义上的人工智能:自动化的发明机器。 遗传编程是一种特殊的利用进化算法的机器学习技术,它开始于一群由随机生成的千百万个计算机程序组成的“人群”,然后根据一个程序完成给定的任务的能力来确定某个程序的适合度,应用达尔文的自然选择(适者生存)确定胜出的程序,计算机程序间也模拟两性组合,变异,基因复制,基因删除等代代进化,直到达到预先确定的某个中止条件为止。 遗传编程的首批试验由(1980年)和(1985年)发表。约翰·Koza(1992年)也写了一本著名的书,《遗传编程:用自然选择让计算机编程》(ISBN 9780262111706),来介绍遗传编程。 使用遗传编程的计算机程序可以用很多种编程语言来写成。早期(或者说传统)的GP实现中,程序的指令和数据的值使用树状结构的组织方式,所以那些本来就提供树状组织形式的编程语言最适合与GP,例如Koza使用的Lisp语言。其他形式的GP也被提倡和实现,例如相对简单的适合传统编程语言(例如Fortran、BASIC和C語言)的线性遗传编程。有商业化的GP软件把线性遗传编程和汇编语言结合来获得更好的性能,也有的实现方法直接生成汇编程序。 遗传编程所需的计算量非常之大(处理大量候选的计算机程序),以至于在90年代的时候它只能用来解决一些简单的问题。近年来,随着遗传编程技术自身的发展和中央处理器计算能力的指数级提升,GP开始产生了一大批显著的结果。例如在2004年左右,GP在多个领域取得近40项成果:量子计算、电子设计、游戏比赛、排序、搜索等等。这些计算机自动生成的程序(算法)中有些与2000年后人工产生的发明十分类似,甚至有两项结果产生了可以申请专利的新发明。 在90年代,人们普遍认为为遗传编程发展一个理论十分困难,GP在各种搜索技术中也处于劣势。2000年后,GP的理论取得重大发展,建立确切的GP概率模型和马尔可夫链模型已成为可能。遗传编程比遗传算法适用的范围更广(实际上包含了遗传算法) 除了生成计算机程序,遗传编程也被用与产生可发展的硬件。 Juergen Schmidhuber进一步提出了宏遗传编程,一种使用遗传编程来生成一个遗传编程系统的技术。一些评论认为宏遗传编程在理论上不可行,但是需要更多的研究来确认。.
概率
--率,舊稱--率,又称或然率、機會率或--、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。 概率常用來量化對於某些不確定命題的想法"Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8,命題一般會是以下的形式:「某個特定事件會發生嗎?」,對應的想法則是:「我們可以多確定這個事件會發生?」。確定的程度可以用0到1之間的數值來表示,這個數值就是機率William Feller, "An Introduction to Probability Theory and Its Applications", (Vol 1), 3rd Ed, (1968),Wiley,ISBN 978-0-471-25708-0。因此若事件發生的機率越高,表示我們越認為這個事件可能發生。像丟銅板就是一個簡單的例子,正面朝上及背面朝上的兩種結果看來機率相同,每個的機率都是1/2,也就是正面朝上及背面朝上的機率各有50%。 這些概念可以形成機率論中的數學公理(參考概率公理),在像數學、統計學、金融、博弈論、科學(特別是物理)、人工智慧/機器學習、電腦科學及哲學等學科中都會用到。機率論也可以描述複雜系統中的內在機制及規律性。.
模糊控制
模糊控制是以模糊集合论,模糊语言变量及模糊逻辑推理为基础的计算机智能控制。該機制的輸入是透過模糊化將原本0和1的資料變成0到1之間的數值,相對於原本的非零即一的二分法較接近人類的思維。在推論的過程中資料為模糊的,但透過的步驟,可使得輸出為精確值。模糊控制常用於智能運算、建構專家系統、和類神經網路共同應用。.
机器人
机器人(Robot)包括一切模拟人类行为或思想與模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,機器人指能自動執行任务的人造機器裝置,用以取代或协助人类工作,一般會是機電裝置,由電腦程式或是電子電路控制。 機器人的範圍很廣,可以是自主或是半自主的,可以從本田技研工業的ASIMO或是的等擬人機器人到工业机器人,也包括多台一起動作的,其至是奈米機器人。藉由模仿逼真的外觀及自動化的動作,理想中的高仿真機器人是高级整合控制论、机械电子、计算机与人工智能、材料学和仿生学的产物,目前科学界正在向此方向研究开发。有关机器人的话题,常见于科幻作品中。 機器人學是有關機器人設計、組裝、運作及應用的技術研究,以及控制機器人的電腦系統、感測器回授以及信息處理等。機器人可以代替人類在一些危險的環境或是製造程序中工作,或是在外貌、行為或認知上取代人類。許多機器的概念都來自自然界,因此有仿生機器人學的出現。 在工業時代機械技術提昇後,像自動化設備、遙控甚至無線遙控也日益成熟,電子學的進展成為機器人發展的動力。第一個電子式自動機是於1948年在英國的布里斯托尔由William Grey Walter發明,第一個數位化,由電腦控制的自動機是在1954年由George Devol發明,命名為,後續在1961年賣給奇異電氣,用在紐澤西州的工廠中,用來將壓鑄設備中的熱金屬上移。 機器人可以作一些重複性高或是危險,人類不想做的工作,也可以做一些因為尺寸限制,人類無法作的工作,甚至是像外太空或是深海中,不適人類生存的環境。 社會上對越來越多的機器人及其角色有些疑慮,機器人因為在越來越多方面可以取代人類,因此被認為是增加失業人口的主因之一 。戰爭中使用的機器人也有道德上的疑慮。機器人自主的可能性及其影響是科幻小說的主題之一,以後也可能變成實際會發生的問題。.
最优化
最优化,是应用数学的一个分支,主要研究以下形式的问题:.
上面的列表回答下列问题
- 什么人工智能和遗传算法的共同点。
- 什么是人工智能和遗传算法之间的相似性
人工智能和遗传算法之间的比较
人工智能有142个关系,而遗传算法有53个。由于它们的共同之处7,杰卡德指数为3.59% = 7 / (142 + 53)。
参考
本文介绍人工智能和遗传算法之间的关系。要访问该信息提取每篇文章,请访问: