我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

人工智能和模式识别

快捷方式: 差异相似杰卡德相似系数参考

人工智能和模式识别之间的区别

人工智能 vs. 模式识别

人工智能(Artificial Intelligence, AI)亦稱機器智能,是指由人製造出來的機器所表現出來的智能。通常人工智能是指通過普通電腦程式的手段實現的人類智能技術。該詞也指出研究這樣的智能系統是否能夠實現,以及如何實現科學領域。同時如此,人類的數量開始收斂及功能逐漸被其取代。 一般教材中的定义领域是“智能主体(intelligent agent)的研究与设计”,智能主体是指一个可以观察周遭环境并作出行动以达致目标的系统。约翰·麦卡锡于1955年的定义是「制造智能机器的科学与工程。」 人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及範圍極廣。人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。 AI的核心问题包括建構能夠跟人類似甚至超越的推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。強人工智能目前仍然是该领域的长远目标。目前強人工智慧已經有初步成果,甚至在一些影像辨識、語言分析、棋類遊戲等等單方面的能力達到了超越人類的水平,而且人工智慧的通用性代表著,能解決上述的問題的是一樣的AI程式,無須重新開發算法就可以直接使用現有的AI完成任務,與人類的處理能力相同,但達到具備思考能力的統合強人工智慧還需要時間研究,比较流行的方法包括统计方法,计算智能和传统意义的AI。目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基於仿生學、認知心理學,以及基于概率论和经济学的演算法等等也在逐步探索當中。. 模式识别(Pattern recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。我们把环境与客体统称为“模式”。随着计算机技术的发展,人类有可能研究复杂的信息处理过程。信息处理过程的一个重要形式是生命体对环境及客体的识别。对人类来说,特别重要的是对光学信息(通过视觉器官来获得)和声学信息(通过听觉器官来获得)的识别。这是模式识别的两个重要方面。市场上可见到的代表性产品有光学字符识别、语音识别系统。 计算机识别的显著特点是速度快、准确性高、效率高,在将来完全可以取代人工录入。 识别过程与人类的学习过程相似。以光學字元識別之“汉字识别”为例:首先将汉字图像进行处理,抽取主要表达特征并将特征与汉字的代码存在计算机中。就像老师教我们「这个字叫什么、如何写」记在大脑中。这一过程叫做“训练”。识别过程就是将输入的汉字图像经处理后与计算机中的所有字进行比较,找出最相近的字就是识别结果。这一过程叫做“匹配”。.

之间人工智能和模式识别相似

人工智能和模式识别有(在联盟百科)11共同点: 人工智能人脸识别统计学计算机视觉语音识别自然语言处理電子計算機机器学习指纹识别数学数据挖掘

人工智能

人工智能(Artificial Intelligence, AI)亦稱機器智能,是指由人製造出來的機器所表現出來的智能。通常人工智能是指通過普通電腦程式的手段實現的人類智能技術。該詞也指出研究這樣的智能系統是否能夠實現,以及如何實現科學領域。同時如此,人類的數量開始收斂及功能逐漸被其取代。 一般教材中的定义领域是“智能主体(intelligent agent)的研究与设计”,智能主体是指一个可以观察周遭环境并作出行动以达致目标的系统。约翰·麦卡锡于1955年的定义是「制造智能机器的科学与工程。」 人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及範圍極廣。人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。 AI的核心问题包括建構能夠跟人類似甚至超越的推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。強人工智能目前仍然是该领域的长远目标。目前強人工智慧已經有初步成果,甚至在一些影像辨識、語言分析、棋類遊戲等等單方面的能力達到了超越人類的水平,而且人工智慧的通用性代表著,能解決上述的問題的是一樣的AI程式,無須重新開發算法就可以直接使用現有的AI完成任務,與人類的處理能力相同,但達到具備思考能力的統合強人工智慧還需要時間研究,比较流行的方法包括统计方法,计算智能和传统意义的AI。目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基於仿生學、認知心理學,以及基于概率论和经济学的演算法等等也在逐步探索當中。.

人工智能和人工智能 · 人工智能和模式识别 · 查看更多 »

人脸识别

人脸识别,特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。.

人工智能和人脸识别 · 人脸识别和模式识别 · 查看更多 »

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

人工智能和统计学 · 模式识别和统计学 · 查看更多 »

计算机视觉

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是指用摄影机和计算机代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图像处理,用计算机处理成为更适合人眼观察或传送给仪器检测的图像。 作为一門科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取「信息」的人工智能系统。这里所指的信息指香农定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 作为一个工程学科,计算机视觉寻求基于相关理论与模型来建立计算机视觉系统。这类系统的组成部分包括:.

人工智能和计算机视觉 · 模式识别和计算机视觉 · 查看更多 »

语音识别

语音识别(speech recognition;語音辨識/言語辨別)技术,也被称为自动语音识别(Automatic Speech Recognition, ASR)、電腦語音識別(Computer Speech Recognition)或是語音轉文本識別(Speech To Text, STT),其目标是以電腦自動将人类的语音内容转换为相應的文字。与及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。 语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。语音识别技术与其他自然语言处理技术如机器翻译及语音合成技术相结合,可以构建出更加复杂的应用,例如语音到语音的翻译。 语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。.

人工智能和语音识别 · 模式识别和语音识别 · 查看更多 »

自然语言处理

自然語言處理(natural language processing,缩写作 NLP)是人工智慧和語言學領域的分支學科。此領域探討如何處理及運用自然語言;自然語言認知則是指讓電腦「懂」人類的語言。 自然語言生成系統把計算機數據轉化為自然語言。自然語言理解系統把自然語言轉化為計算機程序更易于處理的形式。.

人工智能和自然语言处理 · 模式识别和自然语言处理 · 查看更多 »

電子計算機

--,亦稱--,计算机是一种利用数字电子技术,根据一系列指令指示其自动执行任意算术或逻辑操作序列的设备。计算机遵循被称为“程序”的一般操作集的能力使他们能够执行极其广泛的任务。 计算机被用作各种工业和消费设备的控制系统。这包括简单的特定用途设备(如微波炉和遥控器)、工业设备(如工业机器人和计算机辅助设计),以及通用设备(如个人电脑和智能手机之类的移动设备)等。尽管计算机种类繁多,但根据图灵机理论,一部具有最基本功能的计算机,应当能够完成任何其它计算机能做的事情。因此,理论上从智能手机到超级计算机都应该可以完成同样的作业(不考虑时间和存储因素)。由于科技的飞速进步,下一代计算机总是在性能上能够显著地超过其前一代,这一现象有时被称作“摩尔定律”。通过互联网,计算机互相连接,极大地提高了信息交换速度,反过来推动了科技的发展。在21世纪的现在,计算机的应用已经涉及到方方面面,各行各业了。 自古以来,简单的手动设备——就像算盘——帮助人们进行计算。在工业革命初期,各式各样的机械的出现,其初衷都是为了自动完成冗长而乏味的任务,例如织机的编织图案。更复杂的机器在20世纪初出现,通过模拟电路进行复杂特定的计算。第一台数字电子计算机出现于二战期间。自那时以来,电脑的速度,功耗和多功能性不断增加。在现代,机械计算--机的应用已经完全被电子计算机所取代。 计算机在组成上形式不一,早期计算机的体积足有一间房屋的大小,而今天某些嵌入式计算机可能比一副扑克牌还小。当然,即使在今天依然有大量体积庞大的巨型计算机为特别的科学计算或面向大型组织的事务处理需求服务。比较小的,为个人应用而设计的称为微型计算机(Personal Computer,PC),在中國地區简称為「微机」。我們今天在日常使用“计算机”一词时通常也是指此,不过现在计算机最为普遍的应用形式却是嵌入式,嵌入式计算机通常相对简单、体积小,并被用来控制其它设备——无论是飞机、工业机器人还是数码相机。 同计算机相关的技术研究叫计算--机科学,而「计算机技术」指的是将计算--机科学的成果应用于工程实践所派生的诸多技术性和经验性成果的总合。「计算机技术」与「计算机科学」是两个相关而又不同的概念,它们的不同在于前者偏重于实践而后者偏重于理论。至於由数据为核心的研究則称為信息技术。 传统上,现代计算机包括至少一个处理单元(通常是中央处理器(CPU))和某种形式的存储器。处理元件执行算术和逻辑运算,并且排序和控制单元可以响应于存储的信息改变操作的顺序。外围设备包括输入设备(键盘,鼠标,操纵杆等)、输出设备(显示器屏幕,打印机等)以及执行两种功能(例如触摸屏)的输入/输出设备。外围设备允许从外部来源检索信息,并使操作结果得以保存和检索。.

人工智能和電子計算機 · 模式识别和電子計算機 · 查看更多 »

机器学习

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。 机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。.

人工智能和机器学习 · 机器学习和模式识别 · 查看更多 »

指纹识别

指纹识别技术是一种生物识别技术,指纹识别系统是一套包括指纹图像获取、处理、特征提取和比对等模块的模式识别系统。常用于需要人员身份确认的场所,如门禁系统、考勤系统、-zh-tw:筆記型電腦; zh-hk:手提電腦; zh-cn:笔记本电脑;-、银行内部处理、银行支付等。.

人工智能和指纹识别 · 指纹识别和模式识别 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

人工智能和数学 · 数学和模式识别 · 查看更多 »

数据挖掘

数据挖掘(data mining)是一个跨学科的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的中发现模式的计算过程。数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。除了原始分析步骤,它还涉及到数据库和数据管理方面、、模型与推断方面考量、兴趣度度量、复杂度的考虑,以及发现结构、可视化及在线更新等后处理。数据挖掘是“資料庫知識發現”(KDD)的分析步骤。数据挖掘:实用机器学习技术及Java实现》一书大部分是机器学习的内容。这本书最初只叫做“实用机器学习”,“数据挖掘”一词是后来为了营销才加入的。通常情况下,使用更为正式的术语,(大规模)数据分析和分析学,或者指出实际的研究方法(例如人工智能和机器学习)会更准确一些。 数据挖掘的实际工作是对大规模数据进行自动或半自动的分析,以提取过去未知的有价值的潜在信息,例如数据的分组(通过聚类分析)、数据的异常记录(通过异常检测)和数据之间的关系(通过关联式规则挖掘)。这通常涉及到数据库技术,例如。这些潜在信息可通过对输入数据处理之后的总结来呈现,之后可以用于进一步分析,比如机器学习和预测分析。举个例子,进行数据挖掘操作时可能要把数据分成多组,然后可以使用决策支持系统以获得更加精确的预测结果。不过数据收集、数据预处理、结果解释和撰写报告都不算数据挖掘的步骤,但是它们确实属于“資料庫知識發現”(KDD)过程,只不过是一些额外的环节。 类似词语“”、“数据捕鱼”和“数据探测”指用数据挖掘方法来采样(可能)过小以致无法可靠地统计推断出所发现任何模式的有效性的更大总体数据集的部分。不过这些方法可以建立新的假设来检验更大数据总体。.

人工智能和数据挖掘 · 数据挖掘和模式识别 · 查看更多 »

上面的列表回答下列问题

人工智能和模式识别之间的比较

人工智能有142个关系,而模式识别有25个。由于它们的共同之处11,杰卡德指数为6.59% = 11 / (142 + 25)。

参考

本文介绍人工智能和模式识别之间的关系。要访问该信息提取每篇文章,请访问: