之间五角化扭棱十二面體和康威多面體相似
五角化扭棱十二面體和康威多面體有(在联盟百科)3共同点: 康威多面體表示法,几何学,截角五角化六十面體。
康威多面體表示法
康威多面體表示法是用來描述多面體的一種方法。 一般是用種子多面體(seed)為基礎並標示對種子多面體做的操作或運算。 種子多面體一般都為正多面體或正多邊形密鋪,表示的字母則取他們名字的第一個字母,例如.
五角化扭棱十二面體和康威多面體表示法 · 康威多面體和康威多面體表示法 ·
几何学
笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.
截角五角化六十面體
在幾何學中,截角五角化六十面體是一種凸多面體,由12個正五邊形和60個六邊形組成,那60個六邊形是全等的,但不是正六邊形。 截角五角化六十面體共有72個面、210個邊和140個頂點,是五角化扭棱十二面體的對偶多面體。 截角五角化六十面體就是切去頂點的五角化六十面體,但是只能切去相鄰五個面的頂點。 截角五角化六十面體可以是一種富勒烯的結構,是為C。也是病毒衣殼的一種結構。.
上面的列表回答下列问题
- 什么五角化扭棱十二面體和康威多面體的共同点。
- 什么是五角化扭棱十二面體和康威多面體之间的相似性
五角化扭棱十二面體和康威多面體之间的比较
五角化扭棱十二面體有12个关系,而康威多面體有21个。由于它们的共同之处3,杰卡德指数为9.09% = 3 / (12 + 21)。
参考
本文介绍五角化扭棱十二面體和康威多面體之间的关系。要访问该信息提取每篇文章,请访问: