我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

五角化扭棱十二面體和康威多面體

快捷方式: 差异相似杰卡德相似系数参考

五角化扭棱十二面體和康威多面體之间的区别

五角化扭棱十二面體 vs. 康威多面體

在幾何學中,五角化扭棱十二面體是一種凸多面體,乍看之下像是由正三角形組成,但實際上正三角形只有80个,其余60个是等腰三角形。. 在幾何學中,康威多面體是一種多面體類型,包含著所有由柏拉圖立體為種子(T、C、O、D、I),經過有限次康威多面體變換可得到的立體。康威多面體必有外接球和內切球,且有很高的對稱性。 康威多面體有無限多種,其中包含了柏拉圖立體、阿基米德立體、卡塔蘭立體,但大部份的詹森多面體都不是康威多面體。 除了柏拉圖立體、阿基米德立體、卡塔蘭立體之外,截角三角化四面体、截半截角二十面體、截角五角化二十四面體、截角五角化六十面體、四角化扭棱立方體、五角化扭棱十二面體、六角化五角化截角三角化四面體、菱形九十面體也是康威多面體。 所有康威多面體都可使用康威多面體表示法表示;但並非所有可使用康威多面體表示法表示的多面體都屬於康威多面體。.

之间五角化扭棱十二面體和康威多面體相似

五角化扭棱十二面體和康威多面體有(在联盟百科)3共同点: 康威多面體表示法几何学截角五角化六十面體

康威多面體表示法

康威多面體表示法是用來描述多面體的一種方法。 一般是用種子多面體(seed)為基礎並標示對種子多面體做的操作或運算。 種子多面體一般都為正多面體或正多邊形密鋪,表示的字母則取他們名字的第一個字母,例如.

五角化扭棱十二面體和康威多面體表示法 · 康威多面體和康威多面體表示法 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

五角化扭棱十二面體和几何学 · 几何学和康威多面體 · 查看更多 »

截角五角化六十面體

在幾何學中,截角五角化六十面體是一種凸多面體,由12個正五邊形和60個六邊形組成,那60個六邊形是全等的,但不是正六邊形。 截角五角化六十面體共有72個面、210個邊和140個頂點,是五角化扭棱十二面體的對偶多面體。 截角五角化六十面體就是切去頂點的五角化六十面體,但是只能切去相鄰五個面的頂點。 截角五角化六十面體可以是一種富勒烯的結構,是為C。也是病毒衣殼的一種結構。.

五角化扭棱十二面體和截角五角化六十面體 · 康威多面體和截角五角化六十面體 · 查看更多 »

上面的列表回答下列问题

五角化扭棱十二面體和康威多面體之间的比较

五角化扭棱十二面體有12个关系,而康威多面體有21个。由于它们的共同之处3,杰卡德指数为9.09% = 3 / (12 + 21)。

参考

本文介绍五角化扭棱十二面體和康威多面體之间的关系。要访问该信息提取每篇文章,请访问: