我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

五维空间和立方體

快捷方式: 差异相似杰卡德相似系数参考

五维空间和立方體之间的区别

五维空间 vs. 立方體

五維空間是一個包含五個維度的空間。 以物理學的角度來說,五維空間的維度比日常生活中所提到的三維空間以及相對論中的四維空間還要多。 五維空間是一種經常在數學中出現的抽象概念。在物理學和數學中,N數字的序列可以理解為表示''N''維歐幾里得空間中的位置。 宇宙的維度是否為五維同時也是個辯論的話題。. 立方體(Cube),是由6個正方形面組成的正多面體,故又稱正六面體(Hexahedron)、正方體或正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。 立方體是一種特殊的正四棱柱、長方體、三角偏方面體、菱形多面體、平行六面體,就如同正方形是特殊的矩形、菱形、平行四邊形一様。立方體具有,即考克斯特BC3對稱性,施萊夫利符號,,與正八面體對偶。.

之间五维空间和立方體相似

五维空间和立方體有(在联盟百科)5共同点: 多胞形立方體超方形正四面體正方形

多胞形

多胞形是一类由平的边界构成的几何对象。多胞形可以存在於任意维中。多边形为二维多胞形,多面体为三维多胞形,也可以延伸到三維以上的空間,如多胞體即為四维多胞形。 當提到n度空間下的多胞形時,常會用n-多胞形的名稱來表示,因此多边形可稱為2-多胞形,多面体可稱為3-多胞形,多胞體即為4-多胞形。 此詞語是由數學家Hoppe創造,其原文為德文,後來才由翻譯為英文。.

五维空间和多胞形 · 多胞形和立方體 · 查看更多 »

立方體

立方體(Cube),是由6個正方形面組成的正多面體,故又稱正六面體(Hexahedron)、正方體或正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。 立方體是一種特殊的正四棱柱、長方體、三角偏方面體、菱形多面體、平行六面體,就如同正方形是特殊的矩形、菱形、平行四邊形一様。立方體具有,即考克斯特BC3對稱性,施萊夫利符號,,與正八面體對偶。.

五维空间和立方體 · 立方體和立方體 · 查看更多 »

超方形

在几何学中,一个超方形(Hypercube)(又叫立方形、正测形(Measure Polytope))是指正方形和立方体的n维类比(对于正方形,n.

五维空间和超方形 · 立方體和超方形 · 查看更多 »

正四面體

正四面體是由四個等邊三角形組成的正多面體,是一种錐體,有4個頂點,6條邊和4个正三角形面。 將立方體的其中四個頂點两两相連,而這四個頂點任何兩條都沒有落在立方體同一條的邊上,可得到一個正四面體,其邊長為立方體邊長的\sqrt,其體積為立方體體積的\frac,从这里看,正四面体是半立方体。 正四面体是一个拥有无穷多个成员的多胞形家族—正单纯形家族的3维成员。正四面体是一种棱锥体,即它可以被描述成由一个多边形底面和链接底面和一个共同顶点的三角形面组成,对于正四面体来说,这个底面是正三角形,并且它的侧面也都是正三角形,应此正四面体是正三棱锥。 正四面体是三维的正单纯形(3-simplex),这意味着四面体是三维中最简单的多面体,顶点数、棱数、面数比它少的多面体都只能成为退化多面体,同时在更高维的超空间中,任意4个顶点一定共在同一三维空间中,这4个顶点若不存在四点共面、三点共线和两点重合的情况,一定能构成一个四面体,并且只要6条棱的长度确定了,四面体就被唯一确定了(即四面体具有稳定性。这是单纯形面多胞形共有的一个基本特性),由此可知,一个四面体的6条棱长都相等,则其一定是一个正四面体。正四面体是柏拉图立体中唯一一个所有顶点之间的距离都相等的,同时正四面体也是三维空间中使4个顶点每两个顶点间距离相等的唯一方式。.

五维空间和正四面體 · 正四面體和立方體 · 查看更多 »

正方形

在平面几何学中,正方形是四邊相等且四個角是直角的四邊形。正方形是正多边形的一种:正四边形。四个顶点为ABCD的正方形可以记为。 正方形是二维的超方形,也是二维的正轴形。.

五维空间和正方形 · 正方形和立方體 · 查看更多 »

上面的列表回答下列问题

五维空间和立方體之间的比较

五维空间有46个关系,而立方體有64个。由于它们的共同之处5,杰卡德指数为4.55% = 5 / (46 + 64)。

参考

本文介绍五维空间和立方體之间的关系。要访问该信息提取每篇文章,请访问: