我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

乌雷松引理和度量空间

快捷方式: 差异相似杰卡德相似系数参考

乌雷松引理和度量空间之间的区别

乌雷松引理 vs. 度量空间

在拓扑学中,乌雷松引理,有时称为“拓扑学中的第一非平凡事实”,通常用于构造正规空间上不同性质的连续函数。这个定理有广泛的应用,因为所有的度量空间和紧豪斯多夫空间都是正规的。 这个引理是以帕维尔·萨穆伊洛维奇·乌雷松命名的。. 在数学中,度量空间是个具有距離函數的集合,該距離函數定義集合內所有元素間之距離。此一距離函數被稱為集合上的度量。 度量空间中最符合人们对于现实直观理解的為三维欧几里得空间。事实上,“度量”的概念即是欧几里得距离四个周知的性质之推广。欧几里得度量定义了两点间之距离为连接這兩點的直线段之长度。此外,亦存在其他的度量空間,如橢圓幾何與雙曲幾何,而在球體上以角度量測之距離亦為一度量。狭义相對論使用雙曲幾何的雙曲面模型,作為速度之度量空間。 度量空间还能導出开集與闭集之類的拓扑性质,这导致了对更抽象的拓扑空间之研究。.

之间乌雷松引理和度量空间相似

乌雷松引理和度量空间有(在联盟百科)8共同点: 區間开集豪斯多夫空间闭包闭集正规空间最大下界拓扑空间

區間

在數學上,區間是某個範圍的數的搜集,一般以集合形式表示。.

乌雷松引理和區間 · 區間和度量空间 · 查看更多 »

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

乌雷松引理和开集 · 度量空间和开集 · 查看更多 »

豪斯多夫空间

在拓扑学和相关的数学分支中,豪斯多夫空间、分离空间或T2空间是其中的点都“由邻域分离”的拓扑空间。在众多可施加在拓扑空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一性。直观地讲,这个条件可用个双关语来形容:如果某空间中任两点可用开集合将彼此“豪斯多夫”开来,该空间就是“豪斯多夫”的。 豪斯多夫得名于拓扑学的创立者之一费利克斯·豪斯多夫。豪斯多夫最初的拓扑空间定义把豪斯多夫条件包括为公理。.

乌雷松引理和豪斯多夫空间 · 度量空间和豪斯多夫空间 · 查看更多 »

闭包

闭包可以指:.

乌雷松引理和闭包 · 度量空间和闭包 · 查看更多 »

闭集

在拓扑空间中,闭集是指其补集为开集的集合。在一个拓扑空间内,闭集可以定义为一个包含所有其极限点的集合。在完备度量空间中,一个闭集的极限运算是闭合的。.

乌雷松引理和闭集 · 度量空间和闭集 · 查看更多 »

正规空间

在拓扑学和相关的数学分支中,正规空间(Normal space)、T4 空间、T5 空间和 T6 空间是特别优秀的一类拓扑空间。这些条件是分离公理的个例。.

乌雷松引理和正规空间 · 度量空间和正规空间 · 查看更多 »

最大下界

在数学中,某个集合 X 的子集 E 的下确界(infimum 或 infima,记为 inf E)是小于或等于的 E 所有其他元素的最大元素,其不一定在 E 內。所以还常用术语最大下界(简写为 glb 或 GLB)。在数学分析中,实数的下确界是非常重要的常见特殊情况。但這個定义,在更加抽象的序理论的任意偏序集合中,仍是有效的。 下确界是上确界概念的对偶。.

乌雷松引理和最大下界 · 度量空间和最大下界 · 查看更多 »

拓扑空间

拓扑空间是一种数学结构,可以在上頭形式化地定義出如收敛、连通、连续等概念。拓扑空间在现代数学的各个分支都有应用,是一个居于中心地位的、统一性的概念。拓扑空间有独立研究的价值,研究拓扑空间的数学分支称为拓扑学。.

乌雷松引理和拓扑空间 · 度量空间和拓扑空间 · 查看更多 »

上面的列表回答下列问题

乌雷松引理和度量空间之间的比较

乌雷松引理有18个关系,而度量空间有90个。由于它们的共同之处8,杰卡德指数为7.41% = 8 / (18 + 90)。

参考

本文介绍乌雷松引理和度量空间之间的关系。要访问该信息提取每篇文章,请访问: