我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

主量子數和拉普拉斯-龍格-冷次向量

快捷方式: 差异相似杰卡德相似系数参考

主量子數和拉普拉斯-龍格-冷次向量之间的区别

主量子數 vs. 拉普拉斯-龍格-冷次向量

在原子物理学中,主量子数(principal quantum number)是表示原子軌域的量子数的其中一种(其他还包括角量子数、磁量子数和自旋量子数),用小写拉丁字母\displaystyle n表示。主量子数只能是正整数值。当主量子数增加时,軌域範圍变大,原子的外层电子将处于更高的能量值,因此受到原子核的束缚更小。这是波尔模型引入的唯一一个量子数。根據不同量子數可導致電子有不同能量值,称为能階,且這些能量值呈離散分布,任兩階之間沒有過度變化,故電子在不同能量間跳躍轉換時,其能量變化不連續。 作为类比,我们可以先想象一个附載电梯的多樓层建筑。这个建筑具有整数的楼层数,电梯只能停在某一层楼,而不能停在两层的中间。此外,电梯只能移动整数个层高(假定电梯正常工作)。我们可以把楼层的层数和主量子数相类比,楼层数或主量子数越大,所具有的势能越大。 不过以樓層作类比無法完整呈現電子能階的獨特性質:. 在經典力學裏,拉普拉斯-龍格-冷次向量(簡稱為LRL向量)主要是用來描述,當一個物體環繞著另外一個物體運動時,軌道的形狀與取向。典型的例子是行星的環繞著太陽公轉。在一個物理系統裏,假若兩個物體以萬有引力相互作用,則LRL向量必定是一個運動常數,不管在軌道的任何位置,計算出來的LRL向量都一樣;也就是說,LRL向量是一個保守量。更廣義地,在克卜勒問題裏,由於兩個物體以連心力相互作用,而連心力遵守平方反比定律,所以,LRL向量是一個保守量。 氫原子是由兩個帶電粒子構成的。這兩個帶電粒子以遵守庫侖定律的靜電力互相作用.靜電力是一個標準的平方反比連心力。所以,氫原子內部的微觀運動是一個克卜勒問題。在量子力學的發展初期,薛丁格還在思索他的薛丁格方程式的時候,沃爾夫岡·包立使用LRL向量,關鍵性地推導出氫原子的發射光譜。這結果給予物理學家很大的信心,量子力學理論是正確的。 在經典力學與量子力學裏,因為物理系統的某一種對稱性,會產生一個或多個對應的保守值。LRL向量也不例外。可是,它相對應的對稱性很特別;在數學裏,克卜勒問題等價於一個粒子自由地移動於四維空間的三維球面;所以,整個問題涉及四維空間的某種旋轉對稱。 拉普拉斯-龍格-冷次向量是因皮埃爾-西蒙·拉普拉斯,卡爾·龍格,與威爾漢·冷次而命名。它又稱為拉普拉斯向量,龍格-冷次向量,或冷次向量。有趣的是,LRL向量並不是這三位先生發現的!這向量曾經被重複地發現過好幾次。它等價於天體力學中無因次的離心率向量。發展至今,在物理學裏,有許多各種各樣的LRL向量的推廣定義;牽涉到狹義相對論,或電磁場,甚至於不同類型的連心力。.

之间主量子數和拉普拉斯-龍格-冷次向量相似

主量子數和拉普拉斯-龍格-冷次向量有(在联盟百科)8共同点: 原子轨道磁量子数角动量角量子数能级薛定谔方程量子力学波函数

原子轨道

原子軌域(atomorbital;atomic orbital),又稱軌態,是以數學函數描述原子中電子似波行為陳藝菁、張祖辛,,國科會高瞻計畫資源平台。2010年12月11日查閱。。此波函數可用來計算在原子核外的特定空間中,找到原子中電子的機率,並指出電子在三維空間中的可能位置。「軌域」便是指在波函數界定下,電子在--空間出現機率較大的區域。具體而言,原子軌域是在環繞著一個原子的許多電子(電子雲)中,個別電子可能的量子態,並以軌域波函數描述。 現今普遍公認的原子結構是波耳氫原子模型:電子像行星,繞著原子核(太陽)運行。然而,電子不能被視為形狀固定的固體粒子,原子軌域也不像行星的橢圓形軌道。更精確的比喻應是,大範圍且形狀特殊的「大氣」(電子),分布於極小的星球(原子核)四周。只有原子中存在唯一電子時,原子軌域才能精準符合「大氣」的形狀。當原子中有越來越多電子時,電子越傾向均勻分布在原子核四周的空間體積中,因此「電子雲」越傾向分布在特定球形區域內(區域內電子出現機率較高)。 在原子物理學的運算中,複雜的電子函數常被簡化成較容易的原子軌域函數組合。雖然多電子原子的電子並不能以「一或二個電子之原子軌域」的理想圖像解釋,它的波函數仍可以分解成原子軌域函數組合,以原子軌域理論進行分析;就像在某種意義上,由多電子原子組成的電子雲在一定程度上仍是以原子軌域「構成」,每個原子軌域內只含一或二個電子。.

主量子數和原子轨道 · 原子轨道和拉普拉斯-龍格-冷次向量 · 查看更多 »

磁量子数

磁量子数(Magnetic quantum number)是电子运动角量子数在Z轴投影的量子数。 因为电子旋转相当于圆圈电流,它必定会产生磁场,形成轨道磁矩,在磁场作用下将有不同的取向。这一点是由塞曼()在1896年用实验证明的。量子力学波函数方程的解能够解释这个实验结果。所有这三个量子数,都取整数值,互相有制约。角量子数不能超过主量子数,磁量子数不能超过角量子数。.

主量子數和磁量子数 · 拉普拉斯-龍格-冷次向量和磁量子数 · 查看更多 »

角动量

在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.

主量子數和角动量 · 拉普拉斯-龍格-冷次向量和角动量 · 查看更多 »

角量子数

角量子數(Azimuthal quantum number),即軌域角動量的量子數,通常用小寫英文字母l來表示。從經典力學的概念可知,任何旋轉體都有繞軸的角動量。它是一個矢量。當它不是連續變動時,會取不同的離散值,是量子化的。在原子物理中,这个量子数决定了電子雲的形状。例如,电子所处的s, p, d, f, g分别对应的角量子数分别是l.

主量子數和角量子数 · 拉普拉斯-龍格-冷次向量和角量子数 · 查看更多 »

能级

能级(Energy level)理论是一种解释原子核外电子运动轨道的一种理论。它认为电子只能在特定的、分立的轨道上运动,各个轨道上的电子具有分立的能量,这些能量值即为能级。电子可以在不同的轨道间发生跃迁,电子吸收能量可以从低能级跃迁到高能级或者从高能级跃迁到低能级从而辐射出光子。氢原子的能级可以由它的光谱显示出来。.

主量子數和能级 · 拉普拉斯-龍格-冷次向量和能级 · 查看更多 »

薛定谔方程

在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.

主量子數和薛定谔方程 · 拉普拉斯-龍格-冷次向量和薛定谔方程 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

主量子數和量子力学 · 拉普拉斯-龍格-冷次向量和量子力学 · 查看更多 »

波函数

在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.

主量子數和波函数 · 拉普拉斯-龍格-冷次向量和波函数 · 查看更多 »

上面的列表回答下列问题

主量子數和拉普拉斯-龍格-冷次向量之间的比较

主量子數有19个关系,而拉普拉斯-龍格-冷次向量有128个。由于它们的共同之处8,杰卡德指数为5.44% = 8 / (19 + 128)。

参考

本文介绍主量子數和拉普拉斯-龍格-冷次向量之间的关系。要访问该信息提取每篇文章,请访问: