我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

主序星和林軌跡

快捷方式: 差异相似杰卡德相似系数参考

主序星和林軌跡之间的区别

主序星 vs. 林軌跡

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。. 林軌跡(Hayashi track)是原恆星在赫羅圖上經歷原恆星雲之後達到趨近靜力學平衡的路徑。 1961年林忠四郎顯示有一個最小的有效溫度(相當於在赫羅圖的右側邊界)存在,這個臨界溫度大約是4000K,低於這個溫度靜力學平衡便不能維持。因此原恆星雲低於此溫度時必需經由收縮以提高溫度,直到達到臨界溫度。一旦達到臨界溫度,原恆星將繼續收縮至克赫時標,但是有效溫度不會繼續上升,而始終維持在林界限,因此林軌跡在赫羅圖上幾乎是垂直的。 恆星在林界限上是完全的對流體:這是因為他們是低溫和高度的不透明,因此輻射性的能量傳輸是毫無效率的,並且內部因而有大的溫度階梯。質量低於0.5太陽質量的恆星在由前主序星狀態進入主序星時會維持在林軌跡(意思是完全的對流體)的狀態,並在林軌跡的底部進入主序帶。質量高於0.5太陽質量的恆星,當林軌跡結束時,亨耶跡的狀態就會開始,當恆星內部的溫度上升到足夠高時,中央的不透明度便會降低,輻射傳輸能量的效率相對的被提升,會比對流更有效率:對一定質量的恆星而言,在林軌跡中光度最低的恆星是因為他依然完全以對流來傳輸能量。 在林軌跡的對流意謂著恆星將要進入主序帶與有著完全均勻的結構。.

之间主序星和林軌跡相似

主序星和林軌跡有(在联盟百科)7共同点: 原恆星太阳质量主序前星主序星赫羅圖有效溫度流體靜力平衡

原恆星

原恆星是在星際介質中的巨分子雲收縮下出現的天體,是恆星形成過程中的早期階段。對一個太陽質量的恆星而言,這個階段至少持續大約100,000年。它開始於分子雲核心的密度增加,結束於金牛T星的形成,然後就發展進入主序帶。這個階段由金牛T風-一種恆星風的開始宣告結束,標誌著恆星從質量的吸積進入能量的輻射。 觀測顯示巨型分子雲總體上近似在維里平衡的狀態,星雲中的重力束縛能被星雲中構成分子的動能平衡。任何對雲氣的干擾都可能擾亂它的平衡狀態,干擾的例子可以是來自超新星的震波;星系內旋臂的密度波,或是與其他雲氣的接近或碰撞。無論擾動的來源是何種,只要夠大就可能在雲氣內特定的地區造成重力大於熱動能的重力變化。 英國的物理學家詹姆士·金斯曾詳細的討論過上述的现象。他能顯示,在適當的情況下,一團雲氣或其中的一部分,將開始如上所述的收縮。他導出了一條公式可以計算雲氣所需要的大小和質量,以及在重力收縮開始前的溫度和密度。這個臨界質量就是所知的金斯質量,可以由下式得到: 此處 n是特定區域的密度,m是在雲氣內氣體平均的質量,而T是氣體的溫度。.

主序星和原恆星 · 原恆星和林軌跡 · 查看更多 »

太阳质量

太阳质量(符號為)是天文学上用于测量恒星、星团或星系等大型天体的质量单位,定义为太阳的质量,约为2×1030千克,表示为: 1个太阳质量是地球质量的333000倍。 太陽質量也可以用年的長度、地球和太陽的距離天文單位和萬有引力常數(G)的形式呈現: 現在,天文單位和萬有引力常數的數值都已經被精確的測量,然而,還是不太常用太陽質量來表示太陽系的其他行星或聯星的質量;只在大質量天體的測量上使用。現今,使用行星際雷達已經測出很準確的天文單位和" G ",但是太陽質量在習俗中仍然繼續被當成天文學歷史上未解的謎題來探究。.

主序星和太阳质量 · 太阳质量和林軌跡 · 查看更多 »

主序前星

主序前星(PMS星或PMS天體)是恆星尚未成為主序星的一個階段。它可以是金牛T星或獵戶FU型變星(質量小於2太陽質量),或是赫比格Ae/Be星(2至8太陽質量)。 這些天體的能量來自於重力收縮(相對於主序星的氫熔合)。在赫羅圖,主序帶前階段,質量在0.5太陽質量以上的恆星,將先沿著林軌跡(幾乎垂直向下),然後沿著亨耶跡(幾乎水平向左的朝向主序帶)移動。 通過光譜的測量和對溫度與重力間的交互作用,主序前星能夠從主序星的矮星中分辨出來,因為主序前星是比較臃腫的恆星。 在周圍的物質都落入中心的恆星之前,它都被視為原恆星。當周圍的氣體和塵粒消散,吸積的過程停止,這顆恆星才能成為主序前星。 當主序前星越過恆星誕生線之後,便能在可見光下被觀測到,而主序前星階段維持的時間在恆星的生命中低於1%(對比下,恆星生命大約有80%在主序帶上)。 一般相信在這個階段的恆星有密集的星周盤,也是行星可能形成的場所。 Category:赫羅分類.

主序前星和主序星 · 主序前星和林軌跡 · 查看更多 »

主序星

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.

主序星和主序星 · 主序星和林軌跡 · 查看更多 »

赫羅圖

赫羅圖(英语:Hertzsprung–Russell diagram,简写为H–R diagram或HR diagram或HRD)是丹麥天文學家赫茨普龙及由美國天文學家罗素分別于1911年和1913年各自獨立提出的。後來的研究發現,這張圖是研究恆星演化的重要工具,因此把這樣一張圖以當時兩位天文學家的名字來命名,稱為赫羅圖。赫羅圖是恒星的光譜類型與光度之關係圖,赫羅圖的縱軸是光度或絕對星等,而橫軸則是光譜類型或恒星的表面溫度,从左向右遞減。恒星的光譜型通常可大致分為O.B.A.F.G.K.M七种,有一個簡單的英文口訣便于记诵这七种类型,即"Oh Be A Fine Girl(Guy).

主序星和赫羅圖 · 林軌跡和赫羅圖 · 查看更多 »

有效溫度

有效溫度是與一個黑體溫度同等量相同的其能夠發出的輻射。常在一個黑體的發射率未知時使用。.

主序星和有效溫度 · 有效溫度和林軌跡 · 查看更多 »

流體靜力平衡

流體靜力平衡 (法文: Équilibre hydrostatique; 德文: Hydrostatisches Gleichgewicht; 英文:Hydrostatic equilibrium)也稱爲靜力學平衡、靜水壓平衡,是指當流體處於相對靜止,或匀速運動時的平衡狀態。比如地球大氣在重力和由壓力梯度形成的與前者方向相反壓強梯度力之間的平衡,使其不致被重力壓扁,也不致被壓強梯度力擴散到太空中。.

主序星和流體靜力平衡 · 林軌跡和流體靜力平衡 · 查看更多 »

上面的列表回答下列问题

主序星和林軌跡之间的比较

主序星有93个关系,而林軌跡有11个。由于它们的共同之处7,杰卡德指数为6.73% = 7 / (93 + 11)。

参考

本文介绍主序星和林軌跡之间的关系。要访问该信息提取每篇文章,请访问: