徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

主序星和太阳系

快捷方式: 差异相似杰卡德相似系数参考

主序星和太阳系之间的区别

主序星 vs. 太阳系

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。. 太陽系Capitalization of the name varies.

之间主序星和太阳系相似

主序星和太阳系有(在联盟百科)22共同点: 原恆星天狼星太阳太阳质量太陽主序星地球分子雲等离子体紅巨星紅矮星质量超新星金屬量G型主序星恒星恒星光谱核聚变棕矮星

原恆星

原恆星是在星際介質中的巨分子雲收縮下出現的天體,是恆星形成過程中的早期階段。對一個太陽質量的恆星而言,這個階段至少持續大約100,000年。它開始於分子雲核心的密度增加,結束於金牛T星的形成,然後就發展進入主序帶。這個階段由金牛T風-一種恆星風的開始宣告結束,標誌著恆星從質量的吸積進入能量的輻射。 觀測顯示巨型分子雲總體上近似在維里平衡的狀態,星雲中的重力束縛能被星雲中構成分子的動能平衡。任何對雲氣的干擾都可能擾亂它的平衡狀態,干擾的例子可以是來自超新星的震波;星系內旋臂的密度波,或是與其他雲氣的接近或碰撞。無論擾動的來源是何種,只要夠大就可能在雲氣內特定的地區造成重力大於熱動能的重力變化。 英國的物理學家詹姆士·金斯曾詳細的討論過上述的现象。他能顯示,在適當的情況下,一團雲氣或其中的一部分,將開始如上所述的收縮。他導出了一條公式可以計算雲氣所需要的大小和質量,以及在重力收縮開始前的溫度和密度。這個臨界質量就是所知的金斯質量,可以由下式得到: 此處 n是特定區域的密度,m是在雲氣內氣體平均的質量,而T是氣體的溫度。.

主序星和原恆星 · 原恆星和太阳系 · 查看更多 »

天狼星

天狼星(Bd:α CMa)是夜空中最亮的恆星,其視星等為-1.46,幾乎為第二亮恆星老人星的兩倍。它的英文名稱為Sirius,讀法為/sɪɹiəs/,源自古希臘語的Σείριος。天狼星根據拜耳命名法的名稱為大犬座α星。我們肉眼以爲是一顆恆星的天狼星,實際上是一個聯星系統,其中包括一顆光譜型A1V的白主序星和另一顆光譜型DA2的暗白矮星伴星天狼星B(Bd:α CMa B)。 天狼星如此之亮除了因爲其原本就很高的光度以外,還因爲它距離太陽很近。天狼星距離地球約2.6秒差距(約8.6光年),並是最近的恆星之一。天狼星A的質量為太陽的兩倍,而絕對星等為1.42等。它比太陽亮25倍,但光度明顯比其它亮星較暗,如對比老人星或參宿七。此雙星系統有約二億至三億年歷史,而初期是由兩顆藍色的亮星組成。更高質量的天狼星B耗盡了能源,成爲一顆紅巨星,然後又漸漸削去外層,約在一億二千萬年前坍塌成爲今天的白矮星狀態。 中國古代星象學說中,天狼星是「主侵略之兆」的惡星。屈原在《九歌·東君》中寫到:「舉長矢兮射天狼」,以天狼星比擬位於楚國西北的秦國;而蘇軾《江城子》中「會挽雕弓如滿月,西北望,射天狼」,以天狼星比擬威脅北宋西北邊境的西夏。.

主序星和天狼星 · 天狼星和太阳系 · 查看更多 »

太阳

太陽或日是位於太陽系中心的恆星,它幾乎是熱電漿與磁場交織著的一個理想球體。其直徑大約是1,392,000(1.392)公里,相當於地球直徑的109倍;質量大約是2千克(地球的333,000倍),約佔太陽系總質量的99.86% ,同時也是27,173,913.04347826(約2697.3萬)倍的月球質量。 从化學組成来看,太陽質量的大約四分之三是氫,剩下的幾乎都是氦,包括氧、碳、氖、鐵和其他的重元素質量少於2% 。 太陽的恆星光譜分類為G型主序星(G2V)。雖然它以肉眼來看是白色的,但因為在可见光的頻譜中以黃綠色的部分最為強烈,從地球表面觀看時,大氣層的散射使天空成為藍色,所以它呈現黃色,因而被非正式地稱為“黃矮星” 。 光譜分類標示中的G2表示其表面溫度大約是5778K(5505°C),V则表示太陽像其他大多數的恆星一樣,是一顆主序星,它的能量來自於氫融合成氦的核融合反應。太陽的核心每秒鐘聚变6.2億噸的氫。太陽一度被天文學家認為是一顆微小平凡的恆星,但因為銀河系內大部分的恆星都是紅矮星,現在認為太陽比85%的恆星都要明亮。太陽的絕對星等是 +4.83,但是由于其非常靠近地球,因此从地球上看来,它是天空中最亮的天體,視星等達到−26.74。太陽高溫的日冕持續的向太空中拓展,創造的太陽風延伸到100天文單位遠的日球層頂。這個太陽風形成的“氣泡”稱為太陽圈,是太陽系中最大的連續結構。 太陽目前正在穿越銀河系內部邊緣獵戶臂的本地泡區中的本星際雲。在距離地球17光年的距離內有50顆最鄰近的恆星系(最接近的一顆是紅矮星,被稱為比鄰星,距太阳大約4.2光年),太陽的質量在這些恆星中排在第四。 太陽在距離銀河中心24,000至26,000光年的距離上繞著銀河公轉,從銀河北極鳥瞰,太陽沿順時針軌道運行,大約2.25億至2.5億年遶行一周。由於銀河系在宇宙微波背景輻射(CMB)中以550公里/秒的速度朝向長蛇座的方向運動,这两个速度合成之后,太陽相對於CMB的速度是370公里/秒,朝向巨爵座或獅子座的方向運動。 地球圍繞太陽公轉的軌道是橢圓形的,每年1月離太陽最近(稱為近日點),7月最遠(稱為遠日點),平均距離是1.496億公里(天文学上稱這個距離為1天文單位) 。以平均距離算,光從太陽到地球大約需要经过8分19秒。太陽光中的能量通过光合作用等方式支持着地球上所有生物的生长 ,也支配了地球的氣候和天氣。人类從史前時代就一直認為太陽對地球有巨大影響,有許多文化將太陽當成神来崇拜。人类對太陽的正確科學認識進展得很慢,直到19世紀初期,傑出的科學家才對太陽的物質組成和能量來源有了一點認識。直至今日,人类对太阳的理解一直在不断进展中,还有大量有关太陽活动机制方面的未解之謎等待着人们来破解。 現今,太陽自恆星育嬰室誕生以來已經45億歲了,而現有的燃料預計還可以燃燒50億年之久。.

主序星和太阳 · 太阳和太阳系 · 查看更多 »

太阳质量

太阳质量(符號為)是天文学上用于测量恒星、星团或星系等大型天体的质量单位,定义为太阳的质量,约为2×1030千克,表示为: 1个太阳质量是地球质量的333000倍。 太陽質量也可以用年的長度、地球和太陽的距離天文單位和萬有引力常數(G)的形式呈現: 現在,天文單位和萬有引力常數的數值都已經被精確的測量,然而,還是不太常用太陽質量來表示太陽系的其他行星或聯星的質量;只在大質量天體的測量上使用。現今,使用行星際雷達已經測出很準確的天文單位和" G ",但是太陽質量在習俗中仍然繼續被當成天文學歷史上未解的謎題來探究。.

主序星和太阳质量 · 太阳系和太阳质量 · 查看更多 »

太陽

#重定向 太阳.

主序星和太陽 · 太阳系和太陽 · 查看更多 »

主序星

主序星在可顯示恒星演化過程的赫羅圖上,是分布在由左上角至右下角,被稱為主序帶上的恆星。 主序帶是以顏色相對於光度繪圖成線的一條連續和獨特的恆星帶。這個色-光圖就是後來埃希納·赫茨普龍和亨利·諾利斯·羅素合作發展出來,著名的赫羅圖。在這條帶子上的恆星就是所謂的主序星或"矮星"。 恆星形成之後,它在高熱、高密度的核心進行核聚变反應,將氫原子轉變成氦,並且創造出能量。在這個生命期階段的恆星,座落在在主序帶上的位置主要是依據它的質量,但化學成分和其它的因素也有一些關係。所有的主序星都處於流體靜力平衡狀態,它來自炙熱核心向外膨脹的熱壓力與來自外圍包層向內擠壓的重力壓維持著平衡。在核心溫度和壓力與能量孳生率有著強烈的相關性,並有助於維持平衡。在核心孳生的能量傳遞到表面經由光球輻射出去。能量經由輻射或對流傳遞,而後著在其區域內會產生階梯狀的溫度梯度,更高的透明度,或兩者均有。 基於恆星產生能量的主要過程,主序帶有時會被分成上段和下段。質量大約在1.5太陽質量以內的恆星,將氫聚集融合成氦的一系列主要程序稱為質子-質子鏈反應。超過這個質量在主序帶的上段,核融合主要是使用碳、氮、和氧原子,經由碳氮氧循環的程序,將氫原子轉變成氦。質量超過太陽10倍的主序星在核心區域會產生對流,這樣的活動繪激發新創建的氦外移,並維持發生核融合所需要的燃料比例。當核心的對流不再發生時,發展出的富氦核心的外圍會被氫包圍著。質量較低的恆星,核心的對流區會逐步的縮小,大約在2太陽質量附近,核心的對流區就會消失。在這個質量以下,恆星的核心只有輻射,但是在接近表面會有對流。隨著恆星質量的減少,對流的包層會增加,質量低於0.4太陽質量的主序星,全部的質量都在對流。 通常,質量越大的恆星在主序帶上的生命期越短。當在核心的核燃料已被耗盡之後,恆星的發展會離開赫羅圖上的主序帶。這時恆星的發展取決於它的質量,質量低於0.23太陽質量的恆星直接成為白矮星,而質量未超過10太陽質量的恆星將經歷紅巨星的階段;質量更大的恆星可以爆炸成為超新星,或直接塌縮成為黑洞。.

主序星和主序星 · 主序星和太阳系 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

主序星和地球 · 地球和太阳系 · 查看更多 »

分子雲

分子雲(Molecular cloud 或 Stellar nursery)是星際雲的一種,主要是由氣體和固態微塵所組成。其規模沒有一定的範圍,直徑最大可超過100光年,總質量可達太陽的 106 倍。 氫分子(H2)是分子雲中最普遍的組成物質之一。根據估計,每 1cm3 的分子雲內大約有 104 個氫分子;而在物質較密集的區域(如分子雲的核心),1cm3 內的氫分子則約有 105 個。除了氫以外,分子雲內亦有不少經由核融合合成出的元素。這些元素是多數恆星的主要組成物質,因此分子雲同時也是恆星——甚至是行星系的誕生場所,如太陽系就是其一。 氫分子很難被直接偵測到。通常是利用一氧化碳(CO)偵測氫分子。一氧化碳輻射的光度與分子氫質量的比例幾乎是常數。不過在對其他星系的觀測中有理由懷疑這樣的假設。.

主序星和分子雲 · 分子雲和太阳系 · 查看更多 »

等离子体

--(又稱--)是在固態、液態和氣態以外的第四大物質狀態,其特性與前三者截然不同。 氣體在高溫或強電磁場下,會變為等離子體。在這種狀態下,氣體中的原子會擁有比正常更多或更少的電子,從而形成陰離子或陽離子,即帶負電荷或正電荷的粒子。氣體中的任何共價鍵也會分離。 由於等離子體含有許多載流子,因此它能夠導電,對電磁場也有很強的反應。和氣體一樣,等離子體的形狀和體積並非固定,而是會根據容器而改變;但和氣體不一樣的是,在磁場的作用下,它會形成各種結構,例如絲狀物、圓柱狀物和雙層等。 等離子體是宇宙重子物質最常見的形態,其中大部分存在於稀薄的星系際空間(特別是星系團內介質)和恆星之中。.

主序星和等离子体 · 太阳系和等离子体 · 查看更多 »

紅巨星

红巨星是巨星的一种,是恆星的一種衰變狀態,根据恒星质量的不同,存在期只有数百万年不等。质量通常约为0.5至8个太阳质量,质量更大的称为红超巨星,質量再大的為紅特超巨星。.

主序星和紅巨星 · 太阳系和紅巨星 · 查看更多 »

紅矮星

紅矮星,也就是M型主序星(MV),根據赫羅圖,「紅矮星」在眾多處於主序階段的恆星當中,其大小及溫度均相對較小和低,在光譜分類方面屬於M型。它們在恆星中的數量較多,大多數紅矮星的直徑及質量均低於太陽的三分一,表面溫度也低於3,500 K。釋出的光也比太陽弱得多,有時更可低於太陽光度的萬分之一。又由於內部的氫元素核聚變的速度緩慢,因此它們也擁有較長的壽命。质量低于0.35太阳质量的红矮星会有充分的对流,氦元素会在恒星内部均匀分布,而不会在核心累积,紅矮星不會膨脹成紅巨星,而逐步收縮,直至氫氣耗盡。 它们会保持稳定的光度和光谱持续数千亿年,由于现在宇宙的年龄有限,还没有红矮星发展到之后的阶段。 此外人們又發現,不含「金屬」的紅矮星只佔很少(在天文學裡,「金屬」是指氫和氦以外的重元素),而根據「大爆炸」理論的預測,第一代恆星應只擁有氫、氦及鋰元素,如果這些早期恆星包括紅矮星,這些「純正」的紅矮星至今天定能繼續觀測得到,而事實卻不然,含有「金屬」的恆星佔了紅矮星的大多數。因此在宇宙形成時,能發光的第一代恆星定擁有超高質量,它們擁有極短壽命,在經過超新星爆發後,重元素得以產生,成為形成低質量恆星的所需物質。 宇宙眾多恆星中,紅矮星佔了大多數,大約73%左右。, 科学网, 2014-03-06 09:39:11 离太阳最近的65颗恒星中有50颗是红矮星。例如離太陽最近的恆星,半人馬座的南門二比鄰星,便是一顆紅矮星,其光譜分類為M5,視星等11.0。 至2005年,人們首度在紅矮星身上,發現有太陽系外行星圍繞旋轉,第一顆行星的質量與海王星差不多,日距約為600萬公里(0.04天文單位),其表面度約為攝氏150°C。2006年,人們又發現一顆與土星差不多的行星繞著另一顆紅矮星旋轉,這顆行星的日距為3.9億公里(2.6天文單位),表面溫度為攝氏零下220°C。.

主序星和紅矮星 · 太阳系和紅矮星 · 查看更多 »

质量

在日常生活中的“重量”常常被用來表示“質量”,但是在科学上,这两个词表示物质不同的属性(参见质量对重量)。 在物理上,质量通常指物质在以下的三个实验上证明等价的属性之一:.

主序星和质量 · 太阳系和质量 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

主序星和超新星 · 太阳系和超新星 · 查看更多 »

金屬量

金屬量是天文學和物理宇宙學中的一個術語,它是指恒星之內除了氫和氦元素之外,其他的化學元素所占的比例(這個術語不同於一般所認知的“金屬”,因為在宇宙中氫和氦的組成量占了壓倒性的大數量,天文學家將所有更重的元素都視為金屬。) 。例如,碳化合物含量較多的星雲被稱為“富金屬”,但在其他的場合都不會將碳當成金屬。 一個天體的金屬量也許可以提供年齡的訊息。當宇宙剛形成時,依據大霹靂的理論,它幾乎完全都是氫原子,經由太初核合成,創造出相當大比例的氦和微量跡證的鋰。最初的恒星,被認為是第三星族星,完全不含任何金屬。這些恒星的質量是難以置信的巨大,因此在短促的恒星演化中經由核融合創造出週期表內比鐵輕的元素,然後經由壯觀的超新星將元素散佈在宇宙中。雖然,它們存在於主流的宇宙起源模型,但直至2007年,仍未發現第三星族星。下一代的恒星於第一代恒星死亡釋出的物質中创造出来,被觀測到最老的恒星,被認為是第二星族星,有非常少量的金屬;後續世代出生的恒星,因由先前世代的富含金屬的塵埃中创生出来,金屬含量越來越豐富。而當這些恒星死亡時,它們會將更豐富的金屬,經由行星狀星雲或超新星散佈到外面的雲氣中,讓新誕生的恒星有更豐富的金屬。最年輕的恒星,包括我們的太陽,含有的金屬最豐富的恒星,被認為是第一星族星。 橫跨銀河系,金屬量在銀心是最高的,並向外逐漸遞減。在群星之間的金屬量梯度隨恒星的密度變化:在星系的中心有最多的恒星,隨著時間的過去,有越來越多的金屬回到星際物質內,並且成為新恒星的原料。由相似的機制,較大的星系相較於較小的星系,也會有較高的金屬量。在兩個環繞著銀河系的小不規則星系,麥哲倫雲的例子中,大麥哲倫星系的金屬量是銀河系的40%,小麥哲倫星系的金屬量是銀河系的10%。.

主序星和金屬量 · 太阳系和金屬量 · 查看更多 »

G型主序星

黃矮星,在天文學上的正式名稱為GV恆星,是光譜型態為G,發光度為V的主序星。這一類恆星的質量大約在0.8至1.0太陽質量,表面的有效溫度在5,300至6,000K, G. M. H. J. Habets and J. R. W. Heintze, Astronomy and Astrophysics Supplement 46 (November 1981), pp.

G型主序星和主序星 · G型主序星和太阳系 · 查看更多 »

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

主序星和恒星 · 太阳系和恒星 · 查看更多 »

恒星光谱

在天文學,恆星分類是將恆星依照光球的溫度分門別類,伴隨著的是光譜特性、以及隨後衍生的各種性質。根據維恩定律可以用溫度來測量物體表面的溫度,但對距離遙遠的恆星是非常困難的。恆星光譜學提供了解決的方法,可以根據光譜的吸收譜線來分類:因為在一定的溫度範圍內,只有特定的譜線會被吸收,所以檢視光譜中被吸收的譜線,就可以確定恆星的溫度。早期(19世紀末)恆星的光譜由A至P分為16種,是目前使用的光譜的起源。 恒星光谱分类 20世纪初,美国哈佛大学天文台对50万颗恒星进行了光谱研究。他们根据恒星不同的谱线进行了分类,结果发现它们与颜色也有关系.

主序星和恒星光谱 · 太阳系和恒星光谱 · 查看更多 »

核聚变

--,是将两个较轻的核结合而形成一个较重的核和一个很轻的核(或粒子)的一种核反应形式。在此过程中,物质没有守恒,因为有一部分正在聚变的原子核的物质被转化为光子(能量)。核聚变是给活跃的或“主序的”恆星提供能量的过程。 两个较轻的核在融合过程中产生质量亏损而释放出巨大的能量,两个轻核在发生聚变时因它们都带正电荷而彼此排斥,然而两个能量足够高的核迎面相遇,它们就能相当紧密地聚集在一起,以致核力能够克服库仑斥力而发生核反应,这个反应叫做核聚变。 舉個例子:两个質量小的原子,比方說兩個氚,在一定条件下(如超高温和高压),會发生原子核互相聚合作用,生成中子和氦-4,并伴随着巨大的能量释放。 原子核中蕴藏巨大的能量。根据质能方程E.

主序星和核聚变 · 太阳系和核聚变 · 查看更多 »

棕矮星

褐矮星又称--矮星,是質量太低,在核心不能維持大規模的氫融合反應,與主序恆星不同的次恆星。它們的質量據有最重的氣體巨星和最輕的恆星,質量上限大約在75至80 木星質量(MJ)。棕矮星的質量至少超過氘融合所需要的13 MJ,而超過〜65 MJ,鋰融合就可以進行。 在2013年3月,有一篇論文提出質量非常低的棕矮星和巨大行星的分界大約在〜13木星質量,引起了學界的討論。相似的研究涉及DENIS-P J082303.1-491201 b,在2014年3月發現的一個極低溫的聯星系統,質量較低的成員大約只有29木星質量,並且被列名為質量最大的系外行星。儘管如此,一個學派認為要基於形成;另一派認為要依據內部的物理。 棕矮星一樣可以依據光譜分類,主要的類型有M、L、T、和Y。不管它們的名稱,棕矮星有著不同的顏色。依據A.

主序星和棕矮星 · 太阳系和棕矮星 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

主序星和氢 · 太阳系和氢 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

主序星和氦 · 太阳系和氦 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

主序星和氮 · 太阳系和氮 · 查看更多 »

上面的列表回答下列问题

主序星和太阳系之间的比较

主序星有93个关系,而太阳系有336个。由于它们的共同之处22,杰卡德指数为5.13% = 22 / (93 + 336)。

参考

本文介绍主序星和太阳系之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »