我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

丹尼尔·伯努利和波动方程

快捷方式: 差异相似杰卡德相似系数参考

丹尼尔·伯努利和波动方程之间的区别

丹尼尔·伯努利 vs. 波动方程

丹尼尔·伯努利(Daniel Bernoulli,),生於荷兰格罗宁根,著名數學家,约翰·伯努利之子,為伯努利家族代表人物之一。其伯努利定律适用于沿着一条流线的稳定、非粘滞、不可压缩流,在流体力学和空气动力学中有关键性的作用。. 波动方程或稱波方程(wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 1746年,达朗贝尔发现了一维波动方程,欧拉在其后10年之内发现了三维波动方程。Speiser, David.

之间丹尼尔·伯努利和波动方程相似

丹尼尔·伯努利和波动方程有(在联盟百科)4共同点: 约瑟夫·拉格朗日萊昂哈德·歐拉让·勒朗·达朗贝尔流体力学

约瑟夫·拉格朗日

约瑟夫·拉格朗日伯爵(Joseph Lagrange,),法国籍意大利裔数学家和天文学家。拉格朗日曾为普鲁士的腓特烈大帝在柏林工作了20年,被腓特烈大帝称做「欧洲最伟大的数学家」,后受法国国王路易十六的邀请定居巴黎直至去世。拉格朗日一生才华横溢,在数学、物理和天文等领域做出了很多重大的贡献。他的成就包括著名的拉格朗日中值定理,创立了拉格朗日力学等等。 拉格朗日是18世纪一位十分重要的科学家,在数学、力学和天文学三个学科中都有历史性的重大贡献,但他主要是数学家。他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用,使数学的独立性更为清楚,而不仅是其他学科的工具。同时在使天文学力学化、力学分析化上也起了历史性作用,促使力学和天文学(天体力学)更深入发展。在他的时代,分析学等分支刚刚起步,欠缺严密性和标准形式,但这不足以妨碍他取得大量的成果。.

丹尼尔·伯努利和约瑟夫·拉格朗日 · 波动方程和约瑟夫·拉格朗日 · 查看更多 »

萊昂哈德·歐拉

莱昂哈德·欧拉(Leonhard Euler,台灣舊譯尤拉,)是一位瑞士数学家和物理学家,近代数学先驱之一,他一生大部分时间在俄国和普鲁士度过。 欧拉在数学的多个领域,包括微积分和图论都做出过重大发现。他引进的许多数学术语和书写格式,例如函数的记法"f(x)",一直沿用至今。此外,他还在力学、光学和天文学等学科有突出的贡献。 欧拉是18世纪杰出的数学家,同时也是有史以来最伟大的数学家之一。他也是一位多产作者,其学术著作約有60-80冊。法国数学家皮埃爾-西蒙·拉普拉斯曾这样评价欧拉对于数学的贡献:“读欧拉的著作吧,在任何意义上,他都是我们的大师”。.

丹尼尔·伯努利和萊昂哈德·歐拉 · 波动方程和萊昂哈德·歐拉 · 查看更多 »

让·勒朗·达朗贝尔

让·勒朗·达朗贝尔(,又譯達冷柏;),法国物理学家、数学家和天文学家。他一生在很多领域进行研究,在数学、力学、天文学、哲学、音乐和社会活动方面都有很多建树。著有8卷巨著《数学手册》、力学专著《动力学》、23卷的《文集》、《百科全书》的序言。很多的研究成果记载于《宇宙体系的几个要点研究》中。.

丹尼尔·伯努利和让·勒朗·达朗贝尔 · 波动方程和让·勒朗·达朗贝尔 · 查看更多 »

流体力学

流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.

丹尼尔·伯努利和流体力学 · 波动方程和流体力学 · 查看更多 »

上面的列表回答下列问题

丹尼尔·伯努利和波动方程之间的比较

丹尼尔·伯努利有41个关系,而波动方程有68个。由于它们的共同之处4,杰卡德指数为3.67% = 4 / (41 + 68)。

参考

本文介绍丹尼尔·伯努利和波动方程之间的关系。要访问该信息提取每篇文章,请访问: