之间中心法則和基因相似
中心法則和基因有(在联盟百科)14共同点: 基因組,外显子,弗朗西斯·克里克,分子生物学,内含子,真核生物,遗传密码,转座子,转录,脱氧核糖核酸,蛋白质,逆转录酶,核酸,氨基酸。
基因組
在生物学中,一个生物体的基因组是指包含在该生物的DNA(部分病毒是RNA)中的全部遗传信息,又稱基因體(genome)。基因组包括基因和非編碼DNA。1920年,德国汉堡大学植物学教授汉斯·温克勒(Hans Winkler)首次使用基因组这一名词。 更精确地讲,一个生物体的基因组是指一套染色体中的完整的DNA序列。例如,生物个体体细胞中的二倍体由两套染色体组成,其中一套DNA序列就是一个基因组。基因组一词可以特指整套核DNA(例如,核基因组),也可以用于包含自己DNA序列的细胞器基因组,如粒线体基因组或叶绿体基因组。当人们说一个有性生殖物种的基因组正在测序时,通常是指测定一套常染色体和两种性染色体的序列,这样来代表可能的两种性别。即使在只有一种性别的物种中,“一套基因组序列”可能也综合了来自不同个体的染色体。通常使用中,“遗传组成”一词有时在交流中即指某特定个体或物种的基因组。对相关物种全部基因组性质的研究通常被称为基因组学,该学科与遗传学不同,后者一般研究单个或一组基因的性质。.
外显子
外显子(Exon)是真核生物基因的一部分,它在剪接后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。 而内含子则会在剪接过程中被除去。 所有的外显子一同组成了遗传信息,该信息会体现在蛋白质上。 剪接方式并不是唯一的(参看替代剪接),所以外显子只能在成体mRNA中被看出。即使是使用生物信息学方法,要精确预测外显子的位置也是非常困难的。 真核生物的基因,其线性表达被内含子阻断,这就是所谓的断裂基因(split gene),该现象的发现者Richard J. Roberts和Phillip A. Sharp获得了1993年诺贝尔奖。 在反式剪接中,不同mRNA的外显子可以被接合在一起。.
弗朗西斯·克里克
弗朗西斯·哈利·康普頓·克立克,OM,FRS(Francis Harry Compton Crick,),英国生物学家、物理学家及神经科学家。他最重要的成就是1953年在剑桥大学卡文迪许实验室与詹姆斯·沃森共同发现了脱氧核糖核酸(DNA)的双螺旋结构,二人也因此与莫里斯·威尔金斯共同获得了1962年诺贝尔生理及医学奖,獲獎原因是「發現核酸的分子結構及其對生物中信息傳遞的重要性」 。克里克在2004年因大腸癌病逝於美國加州。他的同事克里斯多福·科赫,曾感叹道:“他临死前还在修改一篇论文;他至死仍是一名科学家”。.
分子生物学
分子生物学(Molecular biology)是对生物在分子層次上的研究。这是一门生物学和化学之间跨学科的研究,其研究领域涵盖了遗传学、生物化学和生物物理学等学科。分子生物学主要致力于对细胞中不同系统之间相互作用的理解,包括DNA,RNA和蛋白质生物合成之间的关系以及了解它们之间的相互作用是如何被调控的。.
中心法則和分子生物学 · 分子生物学和基因 ·
内含子
内含子(Intron)是一个基因中非编码DNA片段,它分开相邻的外显子。更精确的定义是:内含子是阻断基因线性表达的序列。DNA上的内含子会被转录到前体RNA中,但RNA上的内含子会在RNA离开细胞核进行转译前被剪除。在成熟mRNA被保留下来的基因部分被称为外显子。真核生物的基因含有外显子和内含子,是前者区别原核生物的特征之一。 内含子可能含有“旧码”,就是在演化过程中丧失功能的基因部分。正因为内含子对转译产物的结构无意义,它比外显子累积有更多的突变。 内含子在选择性剪接扮演重要角色,一个基因可以因此而产生多种不同的蛋白质。归根到底,是在剪接过程中同一段DNA,有时被看作外显子,有时则是内含子。 有一种特殊的内含子,被称作自剪接内含子(核酶),它可以通过自身作用被切除,來离开mRNA。 内含子和外显子的比例因种而异。河鲀的内含子比较少。 但内含子与“垃圾DNA”不同,垃圾DNA亦即那些基因以外的序列,还未被发现有任何功能的DNA,但可能是参与基因调控和选择性剪接的调控。但若内含子对应的mRNA片断没有被除去,可能会发生非常大的突变。如一种植物,科学家抑制了剪切酶的活性而保留了其mRNA中一段内含子。结果,该植物的雌蕊发育不正常。而雄蕊却出现了雌蕊的特征。 “马赛克基因”,就是说编码的DNA片断(外显子)被非编码区域(内含子)隔开,该概念是1977年由Hogness,Mandel和Chambon提出。.
真核生物
真核生物(学名:Eukaryota)是其细胞具有细胞核的单细胞生物和多细胞生物的总称,它包括所有动物、植物、真菌和其他具有由膜包裹着的复杂亚细胞结构的生物。 真核生物与原核生物的根本性区别是前者的细胞内含有细胞核,因此以真核来命名这一类细胞。许多真核细胞中还含有其它细胞器,如粒線體、叶绿体、高尔基体等。 由于具有细胞核,因此真核细胞的细胞分裂过程与没有细胞核的原核生物也大不相同。 真核生物在进化上是单源性的,都属于三域系统中的真核生物域,另外两个域为同属于原核生物的细菌和古菌。但由于真核生物与古菌在一些生化性质和基因相关性上具有一定相似性,因此有时也将这两者共同归于新壁總域演化支。 科學家相信,從基因證據來看,真核生物是細菌與古菌的基因融合體,它是某種古菌與細菌共生,異種結合的產物。.
遗传密码
遺傳密碼(英文:Genetic code)是一組規則,將DNA或mRNA序列以三個核苷酸為一組的密碼子轉譯為蛋白質的胺基酸序列,以用於蛋白質合成。幾乎所有的生物都使用同樣的遺傳密碼,稱為標準遺傳密碼;即使是非細胞結構的病毒,它們也是使用標準遺傳密碼。但是也有少數生物使用一些稍微不同的遺傳密碼。朊毒體以蛋白質為遺傳密碼。 密码子简并性是遗传密码的突出特征。 舒建军的遗传密码对称表 提供了可能的密码子-胺基酸关系的新视角, 并解释了密码子简并性遗传密码背后的隐含含义/逻辑。.
转座子
转座子(Transposon,亦称为转座元件,跳跃子)是一类DNA序列,它们能够在基因组中通过转录或逆转录,在内切酶(Nuclease)的作用下,在其他基因座上出现。转座子的这种行为,与假基因(Pseudogene)的出现颇有相似甚至相同之处。有些科学家将后者视为“基因化石”,是透视物种进化的痕迹之一。转座子的发现,证明了基因组并不是一个静态的集合,而是一个不断在改变自身构成的动态有机体。根据转座子“跳跃”方式的不同,转座子被分为I型和II型转座子。.
转录
转录()是遗传信息由DNA转换到RNA的过程。作为蛋白质生物合成的第一步,转录是mRNA以及非編碼RNA(tRNA、rRNA等)的合成步骤。 转录中,一段基因会被读取、複製为mRNA;就是说一特定的DNA片段作为模板,以DNA依赖的核糖核酸聚合酶(RNA聚合酶或RNA合成酶)作为催化剂而合成前mRNA的过程。 转录尚有未清楚的部分,例如是否需要DNA解旋酶,一般来说是需要的,但某些地区称RNA聚合酶可代替其行使识别DNA上的有关碱基以开始转录的功能。 mRNA转录时,DNA分子双链打开,在RNA聚合酶的作用下,游离的4种核糖核苷酸按照碱基互补配对原则结合到DNA单链上,并在RNA聚合酶的作用下形成单链mRNA分子。至此,转录完成。 转录通常是多起点多向复制。 转录时所转录的仅为DNA上有遗传效应的片段(DNA),不包括内含子。 转录按以下一般步骤进行:.
脱氧核糖核酸
--氧核醣核酸(deoxyribonucleic acid,縮寫:DNA)又稱--氧核醣核酸,是一種生物大分子,可組成遺傳指令,引導生物發育與生命機能運作。主要功能是資訊儲存,可比喻為「藍圖」或「配方」。其中包含的指令,是建構細胞內其他的化合物,如蛋白質與核醣核酸所需。帶有蛋白質編碼的DNA片段稱為基因。其他的DNA序列,有些直接以本身構造發揮作用,有些則參與調控遺傳訊息的表現。 DNA是一種長鏈聚合物,組成單位稱為核苷酸,而糖類與磷酸藉由酯鍵相連,組成其長鏈骨架。每個糖單位都與四種鹼基裡的其中一種相接,這些鹼基沿著DNA長鏈所排列而成的序列,可組成遺傳密碼,是蛋白質氨基酸序列合成的依據。讀取密碼的過程稱為轉錄,是根據DNA序列複製出一段稱為RNA的核酸分子。多數RNA帶有合成蛋白質的訊息,另有一些本身就擁有特殊功能,例如核糖體RNA、小核RNA與小干擾RNA。 在細胞內,DNA能組織成染色體結構,整組染色體則統稱為基因組。染色體在細胞分裂之前會先行複製,此過程稱為DNA複製。對真核生物,如動物、植物及真菌而言,染色體是存放於細胞核內;對於原核生物而言,如細菌,則是存放在細胞質中的拟核裡。染色體上的染色質蛋白,如組織蛋白,能夠將DNA組織並壓縮,以幫助DNA與其他蛋白質進行交互作用,進而調節基因的轉錄。.
中心法則和脱氧核糖核酸 · 基因和脱氧核糖核酸 ·
蛋白质
蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.
逆转录酶
逆转录酶是一类存在于部分RNA病毒中具有逆转录活性、能以单链RNA为模板合成DNA的酶。由逆转录酶催化逆转录合成的DNA称为互補DNA(cDNA)。 通常情况下,细胞内的转录是以DNA为模板合成RNA的,所得RNA为信使RNA(mRNA)供蛋白质合成作模板用。而在部分RNA病毒中,要实现自身的扩增,必须具有DNA,因此先由RNA逆转录合成cDNA再由cDNA转录出RNA。 逆轉錄酶可用於逆轉錄聚合酶鏈式反應,將RNA轉變爲DNA後擴增,以獲得某生物體表現RNA的序列。 這些活化因子會將反轉錄病毒裡的單股RNA轉化成雙股cDNA並且將之插入宿主細胞的基因裡,在一段時間內繁殖。相同的反應被廣泛的應用在實驗室中將RNA轉換成DNA如分子克隆,RNA測序,聚合酶鏈反應(PCR),或是DNA微陣列。 良好的反轉錄酶研究物質包含.
核酸
核酸(nucleic acids)是一种通常位于细胞核内的大型生物分子,負責生物体遗传信息的携带和传递。核酸有兩大類,分別是脱氧核糖核酸(DNA)和核糖核酸(RNA)。 核酸的单体结构为核苷酸。每一个核苷酸分子由三部分组成:一个五碳糖、一个含氮碱基、和一个磷酸基。如果其五碳糖是脱氧核糖則為脱氧核糖核苷酸,此單體之聚合物是DNA。如果其五碳糖是核糖則為核糖核苷酸,此單體之聚合物是RNA。核苷酸也被称为核苷酸磷酸盐。 核酸是最重要的生物大分子(其余为氨基酸/蛋白质,糖/碳水化合物,脂质和/脂肪)。它们大量存在于所有活的东西,功能有编码,传递和表达遗传信息 - 换句话说,信息通过核酸序列被传递。DNA分子含有生物物种的所有遗传信息,为双链分子,其中大多数是链状结构大分子,也有少部分呈环状结构,分子量一般都很大。RNA主要是负责DNA遗传信息的翻译和表达,为单链分子,分子量要比DNA小得多。 核酸存在于所有动植物细胞、微生物和病毒、噬菌体内,是生命的最基本物质之一,对生物的生长、遗传、变异等现象起着重要的决定作用。 核酸是在1869年被科学家弗雷德里希·米歇尔发现。核酸实验研究构成了现代生物学和医学研究的重要组成部分,形成了基因组和法医学,以及生物技术和制药行业的基础。.
氨基酸
胺基酸是生物學上重要的有機化合物,它是由胺基(-NH2)和羧基(-COOH)的官能團組成的,以及一個側鏈连到每一個胺基酸。胺基酸是構成蛋白質的基本單位。賦予蛋白質特定的分子結構形態,使他的分子具有生化活性。蛋白質是生物体內重要的活性分子,包括催化新陳代謝的酶(又称“酵素”)。 不同的胺基酸脱水缩合形成肽(蛋白質的原始片段),是蛋白質生成的前.
上面的列表回答下列问题
- 什么中心法則和基因的共同点。
- 什么是中心法則和基因之间的相似性
中心法則和基因之间的比较
中心法則有47个关系,而基因有141个。由于它们的共同之处14,杰卡德指数为7.45% = 14 / (47 + 141)。
参考
本文介绍中心法則和基因之间的关系。要访问该信息提取每篇文章,请访问: