我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

中微子和微中子天文学

快捷方式: 差异相似杰卡德相似系数参考

中微子和微中子天文学之间的区别

中微子 vs. 微中子天文学

中微子(Neutrino,其字面上的意義為「微小的電中性粒子」,又譯作--)是一种电中性的基本粒子,自旋量子數為½,以希腊字母ν标记。现在已经有证据表明其具有质量。但其质量即使相比于其他亚原子粒子也是非常微小的。它可能是现在唯一一种已探测到的暗物质,是一种热暗物质。 中微子与电子、μ子以及τ子同属轻子,有三种“味”:电中微子()、μ中微子()以及τ中微子()。每种味的中微子都相应存在一种同样电中性且自旋量子數為½的反中微子。在标准模型中,中微子的产生过程遵循轻子数守恒定律。 由于中微子是电中性的,同时还是一种轻子,因而其并不参与电磁相互作用以及强相互作用。其只参与弱相互作用以及引力相互作用。 由于弱相互作用作用距离非常短,而引力相互作用在亚原子尺度下又是十分微弱的,因而中微子在穿过一般物质时不会受到太多阻碍,且难以检测。 中微子可以通过放射性衰变以及核反应等多种方式产生。由于太阳内部时时刻刻都在发生着核反应,而超新星产生等过程也会伴随着剧烈的核反应,因而在宇宙射线中可以检测到中微子的存在。地球附近所检测到的中微子大多来源于太阳。事实上,地球面向太阳的区域每秒钟在每平方厘米上都会穿过大约650亿个来自太阳的中微子。 人们现在认识到中微子在飞行过程中会在不同味间振荡,比如β衰变中产生的电中微子可能在检测时会变为μ中微子或τ中微子。这一现象表明中微子具有质量,且不同味的中微子的质量也是不同的。依据现在宇宙学探测的数据,三种味的中微子质量之和小于电子质量的百万分之一。. 中微子天文学以测量中微子的流量为主要手段,研究天体物理过程。恒星内部的核反应、超新星爆发等过程都会发出大量的中微子。中微子是一种轻子,不参与强相互作用和电磁相互作用,与普通物质的反应截面很小,平均自由程很长,给探测带来了很大的困难。太阳中微子是在太阳内部核反应过程中产生的,在地球附近具有很高的流量。因为中微子与物质的弱相互作用,中微子提供了一个独特的机会去观察那些光学望远镜无法接触的过程。 中微子天文学领域仍然处于非常初期的阶段 - 唯一证实地球之外来源至今为止仅有太阳和超新星SN 1987A。.

之间中微子和微中子天文学相似

中微子和微中子天文学有(在联盟百科)22共同点: 加拿大南达科他州太阳中微子问题契忍可夫輻射小柴昌俊中微子振荡弱相互作用强相互作用弗雷德里克·莱因斯克莱德·科温诺贝尔物理学奖質子衰變超级神冈探测器超新星輕子银河系雷蒙德·戴维斯電磁力IceCube微中子觀測站Science (journal)SN 1987A核反应

加拿大

加拿大(英语、法语:Canada,IPA读音:(英)(法))为北美洲国家,西抵太平洋,东至大西洋,北滨北冰洋,东北方与丹麦领地格陵兰相望,东部与圣皮埃尔和密克隆相望,南方及西北方与美国接壤。加拿大的领土面积达998万平方公里,为全球面积第二大国家。加拿大素有「枫叶之国」的美誉,渥太华为该国首都。 加拿大在1400年前即有原住民在此生活。15世纪末,英国和法国殖民者开始探索北美洲的东岸,并在此建立殖民地。1763年,当七年战争结束后,法国被迫将其几乎所有的北美殖民地割让予英国。在随后的几十年中,英国殖民者向西探索至太平洋地区,并建立了数个新的殖民地。1867年7月1日,1867年宪法法案通过,加拿大省、新不伦瑞克、新斯科舍三个英属北美殖民地组成加拿大联邦,其中加拿大省分裂为安大略和魁北克。在随后100多年里,其它英属北美殖民地陆续加入联邦,组成现代加拿大。 加拿大是实行聯邦制、君主立憲制及議會制的國家,由十个省和三个地区组成,英国女王伊丽莎白二世為國家元首及加拿大君主,而加拿大總督為其及政府的代表。加拿大是双语国家,英语和法语为官方语言,原住民的語言被認定為第一語言。由於位於高緯度地廣人稀,该国是世界上擁有多元化種族及文化的國家,也是移民為主的国家,约五分之一的国民出生于境外,近年來移民大部分來自亞洲。 得益於豐富的自然資源和高度發達的科技,加拿大是富裕、经济发达的国家。以国际汇率计算,加拿大的人均国内生产总值在全世界排名第十六,人类发展指数排名第十。它在教育、政府的透明度、自由度、生活品质及经济自由的都名列前茅。积极参与国际事务,是联合国、北大西洋公約組織、北美空防司令部、七大工業國組織、二十国集团、英联邦、经济合作与发展组织、及太平洋岛国论坛的成员。.

中微子和加拿大 · 加拿大和微中子天文学 · 查看更多 »

南达科他州

南達科他州(State of South Dakota)是美國中西部平原上地勢較高的一州,過去曾是美國印地安人蘇族中拉科他族(Lakota)的聚落所在。南達科他州在1889年11月2日加入美國聯邦,也是在同一天被命名的。 南達科他州的北邊是北達科他州,南邊是內布拉斯加州,東邊則緊鄰愛荷華州與明尼蘇達州,西邊是懷俄明州和蒙大拿州,它同時也是美國上被稱為邊疆帶六州中的一州。 美國戰艦南達科他號就是以此州命名的。 該州分為66個郡,請參看南達科他州的郡列表(List of South Dakota counties)。.

中微子和南达科他州 · 南达科他州和微中子天文学 · 查看更多 »

太阳中微子问题

太阳中微子问题是测量到穿过地球的太阳中微子流量与理论计算相比出现缺失的问题,从1960年代中期持续至约2002年。这种缺失已经被中微子物理的新的认识解决了,这要求对粒子物理学的标准模型的进行修改-特别是中微子振荡。从本质上讲,因为中微子具有质量,它们可以改变它们从已被预计在太阳内部被产生的那一种类型,变成了被当时使用的探测器无法探测到另外两种类型。.

中微子和太阳中微子问题 · 太阳中微子问题和微中子天文学 · 查看更多 »

契忍可夫輻射

契伦科夫辐射(Cherenkov radiation)是介質中運動的电荷速度超過該介質中光速時發出的一種以短波長為主的電磁輻射,其特徵是藍色輝光。這種輻射是1934年由苏联物理學家帕维尔·阿列克谢耶维奇·切连科夫發現的,因此以他的名字命名。1937年另兩名苏联物理學家伊利亞·弗蘭克和伊戈爾·塔姆成功地解釋了契忍可夫辐射的成因,三人因此共同獲得1958年的諾貝爾物理學獎。.

中微子和契忍可夫輻射 · 契忍可夫輻射和微中子天文学 · 查看更多 »

小柴昌俊

小柴昌俊(,),日本物理学家,日本学士院会员。現任东京大学国际基本粒子物理中心(ICEPP)高级顾问,東京大學最初4名特別榮譽教授之一。勳一等旭日大綬章、文化勳章表彰。 1987年,小柴教授在超级神冈探测器完成人類史上首次的微中子發生觀測。2002年,小柴與戶塚洋二、梶田隆章三人同獲潘諾夫斯基實驗粒子物理學獎。同年因其“在天体物理学领域做出的先驱性贡献,其中包括在探测宇宙微中子和发现宇宙X射线源方面的成就”而获得诺贝尔物理学奖。 小柴教授是首位「雙博士」頭銜的日本人諾貝爾獎得主,此外亦是日本人第2位諾貝爾獎暨沃爾夫獎雙料得主。他的老師朝永振一郎、門生梶田隆章也都是諾貝爾物理學獎得主。.

中微子和小柴昌俊 · 小柴昌俊和微中子天文学 · 查看更多 »

中微子振荡

中微子振荡(Neutrino oscillation)是一个量子力学现象,是指微中子在生成時所伴隨的輕子(包括電子、渺子、陶子)味可在之後轉化成不同的味,而被測量出改變。當微中子在空間中傳播時,測到微中子帶有某個味的機率呈現週期性變化。 理论物理学家布鲁诺·庞蒂科夫最先於1957年提出此猜想。 reproduced and translated in and reproduced and translated in 爾後一連串的各种實驗皆觀察到此一現象。微中子振盪也是长期未解决的太陽微中子問題的解答。 中微子振荡无论对理论物理还是实验物理而言都是相当重要的。因为这意味着中微子具有非零的靜質量,这与原始版本的粒子物理标准模型不相吻合。 由於发现了微中子振盪現象存在的證明,並取得微中子質量數據,日本超級神岡探測器的梶田隆章以及加拿大薩德伯里微中子觀測站的阿瑟·麥克唐納兩人獲頒2015年諾貝爾物理學獎。.

中微子和中微子振荡 · 中微子振荡和微中子天文学 · 查看更多 »

弱相互作用

弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.

中微子和弱相互作用 · 弱相互作用和微中子天文学 · 查看更多 »

强相互作用

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱交互作用的範圍大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也將夸克基本粒子結合成為質子及中子等強子,這也是組成大部份物質的粒子。而且一般質子或中子裡,大部份的質能是以强相互作用場能量的形式存在,夸克只提供了1%的質能。 强相互作用可以在二個地方看到:較大的尺度(約1至3飛米)下,强相互作用將質子及中子結合成為原子的原子核,較小的尺度(約0.8飛米,約為核子的尺寸)下,强相互作用將夸克結合,成為質子、中子或其他強子。强相互作用的作用力非常強,大到束縛一個夸克的能量可以轉換為新的夸克對的質量,强相互作用的這個性質稱為夸克禁閉。 强相互作用是唯一強度不會隨距離減小的作用力,但因為夸克禁閉,夸克會限制和其他夸克在一起,形成的強子之間會有殘留的强相互作用,也稱為核力,核力會隨距離而迅速減少。撞擊原子核釋放的部份束縛能和產生的核力有關,而核力也用在核能及核融合式的核武器中。 强相互作用一般認為是由膠子傳遞的,膠子會在夸克、反夸克及其他膠子之間交換。膠子會帶有色荷,色荷和人眼可見的顏色完全沒有關係,色荷類似電荷,但色荷有六種(紅、綠、藍、反紅、反綠、反藍),因此會形成不同的力,有不同的規則,在量子色動力學(QCD)中有描述,這也是夸克-膠子交互作用的基礎。吳秀蘭等科學家對膠子發現有很大貢獻的科學家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。 在大爆炸後,電弱時期時,電弱交互作用和强相互作用分離,統一弱交互作用和電磁交互作用的電弱統一理論已經獲得實驗證實。科學家進一步預期有一個大統一理論可以統一電弱交互作用及强相互作用,現今有許多是大統一理論的理論,第一個是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和實驗不合,其他的理論有SO(10)模型、,但還沒有一個是廣為科學家接受,且有實驗證實的理論,而且許多大統一理論都預言質子衰變,但目前也還沒有實驗支持,大統一理論也還是未解決的物理學問題之一。.

中微子和强相互作用 · 强相互作用和微中子天文学 · 查看更多 »

弗雷德里克·莱因斯

弗雷德里克·莱因斯(Frederick Reines,),美国物理学家,加州大学尔湾分校教授,因为对中微子检测的贡献获1995年获诺贝尔物理学奖。.

中微子和弗雷德里克·莱因斯 · 弗雷德里克·莱因斯和微中子天文学 · 查看更多 »

克莱德·科温

小克莱德·洛蘭·科温(Clyde Lorrain Cowan Jr,),美国物理学家,中微子的发现者之一。1956年,他与弗雷德里克·莱因斯等人共同发现了电中微子。弗雷德里克·莱因斯获得了1995年诺贝尔物理学奖,而科温因为早逝而未在获奖名单中。 Category:美国物理学家 Category:美國第二次世界大戰軍事人物 Category:安葬於阿靈頓國家公墓者 Category:喬治華盛頓大學教師 Category:美國陸軍航空軍軍官 Category:聖路易斯華盛頓大學校友.

中微子和克莱德·科温 · 克莱德·科温和微中子天文学 · 查看更多 »

诺贝尔物理学奖

| title.

中微子和诺贝尔物理学奖 · 微中子天文学和诺贝尔物理学奖 · 查看更多 »

質子衰變

質子衰變,在粒子物理學上,是一個假設的放射性衰變,這假設預言了質子在衰變的時候,會變成更輕的次原子粒子,通常是中性π介子和正電子。質子衰變從未被證實,至今仍沒有證據顯示質子衰變的可能。 在標準模型理論中,質子是重子的一種,理論上它是穩定的,因質子的重子數是大致守恆。即質子不會以微擾的形式衰變成其他粒子,因為質子已經是最輕的(因而也是最低能量的)重子。 (GUTs)明確地否定了重子數的對稱性,允許質子經由X玻色子而衰變。質子衰變是各式提議的 GUTs 中少數可觀察的一種。現時,所有試圖觀察這個衰變的實驗無一成功。.

中微子和質子衰變 · 微中子天文学和質子衰變 · 查看更多 »

超级神冈探测器

超级神冈探测器(Super-Kamiokande,可縮寫為Super-K或SK;スーパーカミオカンデ),全名為超級神岡中微子探測實驗(Super-Kamioka Neutrino Detection Experiment),是日本東京大學在岐阜縣飛驒市神岡町的茂住礦山一个深达1000米的废弃砷矿中建造的大型中微子探测器。其目标是探测质子衰变以及被设计来寻找太阳、地球大气的中微子,并观测銀河系內超新星爆发。.

中微子和超级神冈探测器 · 微中子天文学和超级神冈探测器 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

中微子和超新星 · 微中子天文学和超新星 · 查看更多 »

輕子

輕子(Lepton)是一種不参與强相互作用、自旋为1/2的基本粒子。電子是最為人知的一種輕子;大部分化學領域都會涉及到與電子的相互作用,原子不能沒有它,所有化學性質都直接與它有關。輕子又分為兩類:「帶電輕子」與「中性輕子」。帶電輕子包括電子、緲子、陶子,可以與其它粒子組合成複合粒子,例如原子、電子偶素等等。 在所有帶電輕子中,電子的質量最輕,也是宇宙中最穩定、最常見的輕子;質量較重的緲子與陶子會很快地衰變成電子,緲子與陶子必須經過高能量碰撞製成,例如使用粒子加速器或在宇宙線探測實驗。中性輕子包括電中微子、緲中微子、陶中微子;它們很少與任何粒子相互作用,很難被觀測到。 輕子一共有六種風味,形成三個世代。 第一代是電輕子,包括電子()與電中微子 ()。第二代是緲輕子,包括緲子()與緲中微子 ()。第三代是陶輕子,包括陶子()與陶中微子()。 輕子擁有很多內秉性質,包括電荷、自旋、質量等等。輕子與夸克有一點很不相同:輕子不會感受到強作用力。輕子會感受到其它三種基礎力:引力、弱作用力、電磁力。但是,由於中微子的電性是中性,中微子不會感受到電磁力。每一種輕子風味都有其對應的反粒子,稱為「反輕子」。帶電輕子與對應的反輕子唯一不同之處是帶有電荷的正負號相反。根據某些理論,中微子是自己的反粒子,但這論點尚未被證實。 在標準模型裏,輕子扮演重要角色,電子是原子的成分之一,與質子、中子共同組成原子。在某些被合成的奇異原子裏,電子被更換為緲子或陶子。像電子偶素一類的輕子-反輕子粒子也可以被合成。.

中微子和輕子 · 微中子天文学和輕子 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

中微子和银河系 · 微中子天文学和银河系 · 查看更多 »

雷蒙德·戴维斯

雷蒙德·戴維斯(Raymond "Ray" Davis, Jr.,),美国化學、物理學家,戴維斯、小柴昌俊與里卡尔多·贾科尼,共同獲頒2002年諾貝爾物理學獎,戴維斯與小柴昌俊因「在天體物理學中的開創性貢獻,特別是探測宇宙中微子」共享一半獎金、另一半頒給里卡尔多·贾科尼。.

中微子和雷蒙德·戴维斯 · 微中子天文学和雷蒙德·戴维斯 · 查看更多 »

電磁力

電磁力(electromagnetic force)是處於電場、磁場或電磁場的帶電粒子所受到的作用力。大自然的四種基本力中,電磁力是其中一種,其它三種是強作用力、弱作用力、引力。光子是傳遞電磁力的媒介。在電動力學裏,電磁力稱為勞侖茲力。延伸至相對論性量子場論,在量子電動力學裏,兩個帶電粒子倚賴光子為媒介傳遞電磁力。帶電粒子是帶有淨電荷的粒子。電荷是基本粒子的內秉性質。只有帶電粒子或帶電物質(帶有淨電荷的物質)才能夠感受到電磁力,也只有帶電粒子或帶電物質才能夠製成電場、磁場或電磁場來影響其它帶電粒子或帶電物質。 對於決定日常生活所遇到的物質的內部性質,電磁力扮演重要角色。在物質內部,分子與分子之間彼此相互作用的分子間作用力,就是電磁力的一種形式。分子間作用力促使一般物質呈現出各種各樣的物理與化學性質。由於電子與原子核分別帶有的負電荷與正電荷,它們彼此之間會以電磁力相互吸引,使得電子移動於環繞著原子核的原子軌道,與原子核共同組成原子。分子的建構組元是原子。幾個鄰近原子的電子與電子、電子與原子核、原子核與原子核,以電磁力彼此之間相互作用,主導與驅動各種化學反應,因此促成了所有生物程序。.

中微子和電磁力 · 微中子天文学和電磁力 · 查看更多 »

IceCube微中子觀測站

IceCube Neutrino Observatory |background.

IceCube微中子觀測站和中微子 · IceCube微中子觀測站和微中子天文学 · 查看更多 »

Science (journal)

#重定向 科学 (期刊).

Science (journal)和中微子 · Science (journal)和微中子天文学 · 查看更多 »

SN 1987A

SN 1987A是1987年2月24日在大麥哲倫雲內发现的一次超新星爆发,是自1604年开普勒超新星(SN 1604)以来观测到的最明亮的超新星爆發,肉眼可见,位於蜘蛛星雲的外圍,距離地球大約51,400秒差距(約168,000光年)。由於是在1987年發現的第一顆超新星,因此被命名為「1987A」。SN 1987A爆發的光線於1987年2月23日到達地球,亮度於5月左右到達頂峰,視星等達3等,之後漸漸轉暗。这是现代的天文学家在近距离观测到一颗超新星的第一次机会,提供了核心坍缩超新星的许多深入了解。.

SN 1987A和中微子 · SN 1987A和微中子天文学 · 查看更多 »

核反应

核反应指的是某种微观粒子与原子核相互作用(碰撞)时,使核的结构发生变化,形成新核,放出一个或几个粒子的过程;重核可以发生裂变。 从原子物理学上来说,参与核反应碰撞的粒子数目可以超過两个,但因三个以上的粒子在同一时间在同一位置相撞的几率远低于两个粒子,因此实际上这种情况几乎不会出现。(從\mathrm.

中微子和核反应 · 微中子天文学和核反应 · 查看更多 »

上面的列表回答下列问题

中微子和微中子天文学之间的比较

中微子有155个关系,而微中子天文学有34个。由于它们的共同之处22,杰卡德指数为11.64% = 22 / (155 + 34)。

参考

本文介绍中微子和微中子天文学之间的关系。要访问该信息提取每篇文章,请访问: