之间中微子和中微子探测器相似
中微子和中微子探测器有(在联盟百科)10共同点: 契忍可夫輻射,宇宙線,巴克三微中子觀測所,弱相互作用,电子,超级神冈探测器,薩德伯里微中子觀測站,重水,IceCube微中子觀測站,SN 1987A。
契忍可夫輻射
契伦科夫辐射(Cherenkov radiation)是介質中運動的电荷速度超過該介質中光速時發出的一種以短波長為主的電磁輻射,其特徵是藍色輝光。這種輻射是1934年由苏联物理學家帕维尔·阿列克谢耶维奇·切连科夫發現的,因此以他的名字命名。1937年另兩名苏联物理學家伊利亞·弗蘭克和伊戈爾·塔姆成功地解釋了契忍可夫辐射的成因,三人因此共同獲得1958年的諾貝爾物理學獎。.
宇宙線
宇宙線亦稱為宇宙射线,是來自外太空的帶電高能次原子粒子。它們可能會產生二次粒子穿透地球的大氣層和表面。射線這個名詞源自於曾被認為是電磁輻射的歷史。主要的初級宇宙射線(來自深太空與大氣層撞擊的粒子)成分在地球上一般都是穩定的粒子,像是質子、原子核、或電子。但是,有非常少的比例是穩定的反物質粒子,像是正電子或反質子,這剩餘的小部分是研究的活躍領域。 大約89%的宇宙線是單純的質子,10%是氦原子核(即α粒子),還有1%是重元素。這些原子核構成宇宙線的99%。孤獨的電子(像是β粒子,雖然來源仍不清楚),構成其餘1%的絕大部分;γ射線和超高能微中子只佔極小的一部分。 粒子能量的多樣化顯示宇宙線有著廣泛的來源。這些粒子的來源可能是太陽(或其它恆星)或來自遙遠的可見宇宙,由一些還未知的物理機制產生的。宇宙線的能量可以超過1020 eV,遠超過地球上的粒子加速器可以達到的1012至1013 eV,使許多人對有更大能量的宇宙線感興趣而投入研究。 經由宇宙線核合成的過程,宇宙線對宇宙中鋰、鈹、和硼的產生,扮演著主要的角色。它們也在地球上產生了一些放射性同位素,像是碳-14。在粒子物理的歷史上,從宇宙线中發現了正電子、緲子和π介子。宇宙線也造成地球上很大部份的背景輻射,由於在地球大氣層外和磁場中的宇宙線是非常強的,因此對維護航行在行星際空間的太空船上太空人的安全,在設計有重大的影響。.
中微子和宇宙線 · 中微子探测器和宇宙線 ·
巴克三微中子觀測所
巴克三微中子觀測所 (Baksan Neutrino Observatory,BNO)是NR RAS的一個科學實驗室,座落於蘇聯高加索山的巴克三峽谷。它於1977年開始運作,是前蘇聯這一類觀測所中的第一個。它有一架在巴克三地表之下300公尺的閃爍望遠鏡 ,位於3,500公尺深處的鎵 - 鍺微中子望遠鏡 (SAGE實驗),和一定數量的地面設施。.
中微子和巴克三微中子觀測所 · 中微子探测器和巴克三微中子觀測所 ·
弱相互作用
弱相互作用(又稱弱力或弱核力)是自然的四種基本力中的一種,其餘三種為強核力、电磁力及万有引力。次原子粒子的放射性衰變就是由它引起的,恆星中一種叫氫聚變的過程也是由它啟動的。弱相互作用會影響所有費米子,即所有自旋為半奇數的粒子。 在粒子物理學的標準模型中,弱相互作用的理論指出,它是由W及Z玻色子的交換(即發射及吸收)所引起的,由於弱力是由玻色子的發射(或吸收)所造成的,所以它是一種非接觸力。這種發射中最有名的是β衰變,它是放射性的一種表現。重的粒子性質不穩定,由於Z及W玻色子比質子或中子重得多,所以弱相互作用的作用距離非常短。這種相互作用叫做“弱”,是因為β衰變發生的機率比強交互作用低很多,表示它的一般強度比電磁及強核力弱好幾個數量級。大部份粒子在一段時間後,都會通過弱相互作用衰變。弱相互作用有一種獨一無二的特性——那就是夸克味變——其他相互作用做不到這一點。另外,它還會破壞宇稱對稱及CP對稱。夸克的味變使得夸克能夠在六種“味”之間互換。 弱力最早的描述是在1930年代,是四費米子接觸相互作用的費米理論:接觸指的是沒有作用距離(即完全靠物理接觸)。但是現在最好是用有作用距離的場來描述它,儘管那個距離很短。在1968年,電磁與弱相互作用統一了,它們是同一種力的兩個方面,現在叫電弱相互作用。 弱相互作用在粒子的β衰變中最為明顯,在由氫生產重氫和氦的過程中(恆星熱核反應的能量來源)也很明顯。放射性碳定年法用的就是這樣的衰變,此時碳-14通過弱相互作用衰變成氮-14。它也可以造出輻射冷光,常見於超重氫照明;也造就了β伏這一應用領域(把β射線的電子當電流用)。.
电子
电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.
超级神冈探测器
超级神冈探测器(Super-Kamiokande,可縮寫為Super-K或SK;スーパーカミオカンデ),全名為超級神岡中微子探測實驗(Super-Kamioka Neutrino Detection Experiment),是日本東京大學在岐阜縣飛驒市神岡町的茂住礦山一个深达1000米的废弃砷矿中建造的大型中微子探测器。其目标是探测质子衰变以及被设计来寻找太阳、地球大气的中微子,并观测銀河系內超新星爆发。.
中微子和超级神冈探测器 · 中微子探测器和超级神冈探测器 ·
薩德伯里微中子觀測站
薩德伯里微中子觀測站(Sudbury Neutrino Observatory,缩写为SNO)是位於加拿大安大略省薩德伯里2100米深的镍矿中的中微子觀測站。因為對於中微子振盪的發現做出重大貢獻,SNO實驗主任阿瑟·麥克唐納榮獲2015年諾貝爾物理學獎。薩德伯里微中子觀測站的建立是為了要研究太陽中微子問題。觀測站的中微子探測器主要是用來探測太陽中微子,通過它們與重水的相互作用。探測器從1999年5月開始啟用,直到2006年11月為止。雖然探測器已停止運作,在未來數年中,SNO團隊仍會繼續分析在那段時期獲得的數據。現今(2015年),已被擴充的地下實驗室仍舊繼續被用來進行其它SNOLAB實驗。SNO的設備正在整修,準備未來用於實驗。.
中微子和薩德伯里微中子觀測站 · 中微子探测器和薩德伯里微中子觀測站 ·
重水
重水(或称氘代水,化学式D2O或者2H2O)是水的一種,它的摩尔质量比一般水要重。普通的水(H2O)是由兩個只具有質子的氫原子和一個氧16原子所組成,但在重水分子內的兩個氫同位素氘,比一般氫原子有各多一個中子,因此造成重水分子的質量比一般水要重。地球上的水大約有 6,400分之一是半重水(HDO)。 由於普通水和重水都是由相同數量的氫和氧原子組成,兩者的化學反應皆會接近相同。但在物理上,重水的凝固点(即固態水的熔點)和沸點比普通水稍高,在一個大氣壓力下,重水的凝固點是攝氏3.82度,沸點是攝氏101.4度,密度為1.1056g/cm3。 有另一種重水稱為半重水,HDO,它只有一個氫原子是多一個中子的重氫。一般的半重水都並不純正,通常是50%HDO,25%的H2O 及 25%的D2O。除了由重氫組成的重水分子外,還有一種由重氧原子(氧17或氧18)組成的重水分子,稱為「重氧水」。由於分離出重氧水分子的難度較高,因此提煉純正重氧水的成本會比重氫水為高。.
IceCube微中子觀測站
IceCube Neutrino Observatory |background.
IceCube微中子觀測站和中微子 · IceCube微中子觀測站和中微子探测器 ·
SN 1987A
SN 1987A是1987年2月24日在大麥哲倫雲內发现的一次超新星爆发,是自1604年开普勒超新星(SN 1604)以来观测到的最明亮的超新星爆發,肉眼可见,位於蜘蛛星雲的外圍,距離地球大約51,400秒差距(約168,000光年)。由於是在1987年發現的第一顆超新星,因此被命名為「1987A」。SN 1987A爆發的光線於1987年2月23日到達地球,亮度於5月左右到達頂峰,視星等達3等,之後漸漸轉暗。这是现代的天文学家在近距离观测到一颗超新星的第一次机会,提供了核心坍缩超新星的许多深入了解。.
上面的列表回答下列问题
- 什么中微子和中微子探测器的共同点。
- 什么是中微子和中微子探测器之间的相似性
中微子和中微子探测器之间的比较
中微子有155个关系,而中微子探测器有13个。由于它们的共同之处10,杰卡德指数为5.95% = 10 / (155 + 13)。
参考
本文介绍中微子和中微子探测器之间的关系。要访问该信息提取每篇文章,请访问: