之间中子星和脉冲星相似
中子星和脉冲星有(在联盟百科)17共同点: 卡文迪许实验室,夸克星,密度,中子,引力,剑桥大学,磁場,约瑟琳·贝尔·伯奈尔,白矮星,蟹狀星雲,角动量,诺贝尔物理学奖,超新星,黑洞,PSR B1257+12,SN 1054,恆星演化。
卡文迪许实验室
卡文迪許實驗室(Cavendish Laboratory),即是劍橋大學的物理系,研究领域包括了天体物理学、粒子物理学、固体物理学、生物物理学。由著名的英国物理学家詹姆斯·克拉克·麦克斯韦于1871年創立,1874年建成實驗室,以英国物理学家和化学家亨利·卡文迪许的名字命名。亨利·卡文迪许的亲戚、当时的剑桥大学校长威廉·卡文迪许私人捐款帮助了实验室的筹建。.
夸克星
夸克星(Quark star)由奇异物質組成,是一種理論假設可能存在的引力緻密星體,需要更多的觀測數據及關鍵遺失環結理論推導來佐證其真實性。 實驗驗證方面,關鍵的奇異物質理論至今還是假說,至2013年五月為止,沒有任何可能的夸克星類型被證實或理論可以完全自洽,基礎成分「H雙重子」亦未被尋獲,最後一組對「H雙重子」進行搜尋實驗的是日本KEK(高能加速器研究機構)與日本原子能研究開發機構(JAEA)的合作項目J-PARC,目前尚未有結論。 2013年6月17日,北京質譜儀BES III與日本KEK的Belle團隊在研究疑似粲夸克偶素(Charmonium)的Y(4260)時,分別獨立發現Zc(3900),實驗報告於美國物理通訊上發表,Zc(3900)的夸克態可能是ccud或是介子分子混雜態(hadron molecule),是目前跡象最明確有可能被正式認定的第一個四夸克態粒子(雙夸克反雙夸克態)。Zc(3900)如果確認成立,其意義十分重大,將正式確立多夸克態物理的成立,確認一整門新物理學的出現,多夸克態一旦成立,則夸克水平的星體均可能成立,但不見得是奇異夸克星,也有可能是混雜態夸克星或是孤子星產生機率更高,這對近代天體物理發展而言是一項很大的突破,一整個族系的多夸克態星體均有可能被列入天體物理的研究範圍內。 對夸克星模型產生矛盾的現有物理實驗當中,在2013年1月,質子大小再度被確認為0.84087飛米,以μ-氫原子(Hydrogen muon)作為測量基準,置信度為7σ,遠比使用氫原子精確許多,推翻百年以來推算的大小0.8768飛米,完成驗證程序,正式為物理學界承認(2010年,德國(MPQ)首度測量μ-氫原子所得數據大約為0.8418飛米,其後被物理學界稱為質子大小謎團)。該數值導致量子電動力學當中的一些物理常量可能必須修改,例如「里德伯常量」。質子的夸克態為uud,質子大小修正幅度達4%,這意味過去推導的「H雙重子」uuddss物態方程,在數值計算上幾乎是全面錯誤的,短距力的效應在夸克星模型當中被低估許多。由此可以確信的是現有的夸克星模型全部都是需要修正的,這包含了夸克星半徑的推算、引力緻密程度及內部能階所能產生各類衰變粒子所造成的星體穩定性問題,2013年以前推導的夸克星模型沒有任何一個是正確的,引用新數值重新計算的工作還在進行中,尚未有相關的新論文出現。 理論發展方面,2013年3月中,CERN宣布了希格斯玻色子的能階大約在125.3-126.0GeV之間,如果CERN以外的第三方對照組實驗的數據同樣驗證此一數值(現代科學程序上要求CERN以外的機構重覆檢驗正確性,至少要有CERN以外的一個單位或多個單位進行重覆證實,CERN的發現並非最終結論),則此一能階則表示夸克星核心將會頻繁地形成希格斯玻色子及比較強烈的真空極化效應,甚至會形成穩定的希格斯玻色子物質團,夸克星的組成將不再是單純的奇異物質團,模型還必須考慮到與希格斯玻色子的交互作用,舊有推導的夸克星模型則幾乎全面都存在錯誤。考慮到夸克星是最可能進一步坍縮成更高密度的引力緻密星體,核心當中含有高密度的希格斯玻色子應當是一個正確的物理推論結果,提供了完美解釋了進一步坍縮的成因,過往的夸克星模型通常避開此一量子效應,在希格斯玻色子能階確認以後,夸克星模型無可避免地需要進行全面修正。 在質量生成貢獻度方面,希格斯玻色子一般只貢獻大約10%以下,90%以上是由夸克與膠子之間的力所賦予,質子質量當中,夸克僅佔5%,膠子不具質量,其餘質量貢獻為夸克與膠子之間的交互作用所貢獻,由於H雙重子尚未尋獲,無法得知其實際質量,在夸克星的密度及強引力參數下,夸克與膠子之間的交互作用對質量的貢獻比例是否會發生重大改變,成為夸克星模型當中的關鍵要素,對於其是否進一步坍縮或是維持長期結構穩定,以及星體總質量的生成因素,有關鍵性的影響,同時也全面影響夸克星的演化結構,舊有的理論物態方程均未考慮到此一因素,明顯需要進行大幅度修正。 希格斯玻色子的發現,將會使得夸克星研究成為新物理學及「巨觀宇宙結構研究」的關鍵性角色,夸克星引力及質量生成機制涉及使用廣義相對論的部份必須幾乎全面修改,物態轉換過程的進一步研究,對於證明廣義相對論是一個錯誤的物理理論有很大的幫助,目前夸克星機制的矛盾,大多數都來自於使用廣義相對論假設,假定廣義相對論存在錯誤的假設,並且採用新的量子引力延展理論,例如或是純量不變量(Scalar invariant)系列約十餘種延展理論,在高能階區域進行修正,對於尋找正確的夸克星模型及證明「經典黑洞理論」是錯誤的天體物理理論會有很大的幫助,而正確的夸克星模型則對暗物質、巨引源、超級星系長城及巨觀宇宙結構有決定性的影響。.
密度
3 | symbols.
中子
| magnetic_moment.
引力
重力(Gravitation或Gravity),是指具有质量的物体之间相互吸引的作用,也是物体重量的来源。 引力与电磁力、弱相互作用力及强相互作用力一起构成自然界的四大基本相互作用。在这四种基本相互作用中,引力是最弱的一种,但同时也是一种长程有效作用力。在现代物理学中,引力一般由广义相对论来精确描述,认为引力反映了物体的惯性在弯曲时空中的表现。而经典力学中的牛顿万有引力定律则是对引力在通常物理条件下的极好的近似描述。 在地球上,地球对地面附近物体的万有引力赋予了物体的重量,并使物体落向地面。在宇宙中,引力让物质聚集而形成天体,同时也让天体之间相互吸引,形成按照轨道运转的天体系统。此外,月球以及太陽对地球上海水的引力,形成了地球上的潮汐。.
剑桥大学
劍橋大學(University of Cambridge;勳銜:Cantab)為一所坐落於英國劍橋市的研究型書院聯邦制大學。劍橋為英語世界中歷史第二悠久的大學,前身是一個於1209年成立的學者協會。這些學者本為牛津大學的一員,但後因與牛津鎮民發生衝突而移居至此。這兩所古老的大學在辦學模式等多方面都非常相似,並經常獲合稱為「牛剑」。 劍橋大學由31所成員書院及6所學術學院組成。雖大學本身為公立性質,但享有高度自治權的書院則屬私立機構。它們有自己的管理架構、收生以及學生活動安排,工作有別於負責教研的大學中央。劍橋大學是多個學術聯盟的成員之一,亦為英國「金三角名校」及劍橋大學醫療夥伴聯盟的一部分,並與產業聚集地的發展息息相關。 除了各學系安排的課堂,劍橋的學生也需出席由書院提供的輔導課程。學校共設八間文藝及科學博物館,並有館藏逾1500萬冊的圖書館系統及全球最古老的大學出版社。除了學習,學生可加入各學會、學團及體育校隊,參與不同的課外活動。劍橋大學校友包括多位著名數學家、科學家、經濟學家、作家、哲學家。共有116位諾貝爾獲獎者、15位英國首相、10位菲爾茲獎得主、6位图灵奖得主曾為此校的師生、校友或研究人員。.
磁場
在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.
约瑟琳·贝尔·伯奈尔
乔丝琳·贝尔·伯内尔女爵士,DBE,FRS,FRSE,FRAS(Dame Jocelyn Bell Burnell, ),出生名蘇珊·乔丝琳·贝尔(Susan Jocelyn Bell),英国天体物理学家,出生於贝尔法斯特。当她还是研究生时,与安东尼·休伊什一起利用射电望远镜发现了第一颗脉冲星。 她现在是物理研究所的主管。2014年10月起擔任愛丁堡皇家學會會長。 关于发现脉冲星的文件共有5个作者,安东尼·休伊什位列第一,约瑟琳·贝尔·伯奈尔列在第二。休伊什博士与马丁·赖尔博士一同被授予诺贝尔物理学奖,但并没有把贝尔作为共同研究者列入诺贝尔奖获奖名单。这引起了争议,遭到了休伊什的同胞——天文学家霍伊尔的谴责。 瑞典科学院在其新闻稿中宣布1974年诺贝尔物理学奖,引用莱尔和休伊什他们在天体物理学的开创性工作,特别提到莱尔对孔径的工作合成技术的支持,和休伊什发现脉冲星上所起的决定性作用。约瑟夫·什克洛夫斯基博士,1972年的布鲁斯奖的获奖者,已在1970年国际天文学联合大会时找出贝尔,告诉她“贝尔小姐,你已作出20世纪最伟大的天文发现”。.
中子星和约瑟琳·贝尔·伯奈尔 · 约瑟琳·贝尔·伯奈尔和脉冲星 ·
白矮星
白矮星(white dwarf),也稱為簡併矮星,是由简并态物质構成的小恆星。它們的密度極高,一顆質量與太陽相當的白矮星體積只有地球一般的大小,微弱的光度則來自過去儲存的熱能。在太陽附近的區域內已知的恆星中大約有6%是白矮星。這種異常微弱的白矮星大約在1910年就被亨利·諾利斯·羅素、愛德華·皮克林和威廉·佛萊明等人注意到, p. 1白矮星的名字是威廉·魯伊登在1922年取的。 白矮星被認為是中、低質量恆星演化階段的最終產物,在我們所屬的星系內97%的恆星都屬於這一類。, §1.
蟹狀星雲
蟹状星云(M1,NGC 1952或金牛座 A)是位于金牛座ζ星(天關)东北面的一个超新星残骸和脉冲风星云。蟹状星云距地球约6,500光年(2,000秒差距),直径达11光年(3.4秒差距),并以每秒约1,500公里的速度膨胀。它是银河系英仙臂的一部分。 该星云由约翰·贝维斯于1731年发现,它对应于中国、阿拉伯和日本天文学家於公元1054年记录的一次超新星爆发(编号SN 1054,中国称天关客星)。1969年天文学家发现星云的中心是一颗脉冲星,它的直径约28–30公里,每秒自转30.2次,并发射出从γ射线到无线电波的宽频率范围电磁波。它也是首顆被确认为历史上超新星爆发遗迹的天体。 蟹状星云的X射线和γ射线辐射能量超过30 keV,最高可达10 TeV,而且非常稳定,因此天文学家将蟹状星云看成是宇宙中最稳定的高能辐射源之一,并将其作为一种标准来测量宇宙其他輻射源的能量。此星云是一个很好的辐射源,通过其他天体的掩星可以研究它與其他的天體。20世纪50和60年代时,天文学家曾借助穿过日冕的蟹状星云辐射对太阳日冕进行密度和成分测定。2003年,土卫六阻挡了蟹状星云的X射线辐射,天文学家借此机会测量土卫六的大气层的厚度。.
角动量
在物理学中,角动量是与物体的位置向量和动量相关的物理量。對於某慣性參考系的原點\mathbf,物體的角動量是物体的位置向量和动量的叉積,通常写做\mathbf。角动量是矢量。 其中,\mathbf表示物体的位置向量,\mathbf表示角动量。\mathbf表示动量。角動量\mathbf又可寫為: 其中,I表示杆状系统的转动惯量,\boldsymbol是角速度矢量。 假設作用於物體的外力矩和為零,則物體的角动量是守恒的。需要注意的是,由于成立的条件不同,角动量是否守恒与动量是否守恒没有直接的联系。 當物體的運動狀態(動量)發生變化,則表示物體受力作用,而作用力大小就等於動量\mathbf的時變率:\mathbf.
诺贝尔物理学奖
| title.
超新星
超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.
黑洞
黑洞(英文:black hole)是根據廣義相對論所推論、在宇宙空間中存在的一種質量相當大的天體和星體(並非是一般認知的「洞」概念)。黑洞是由質量足够大的恒星在核聚变反应的燃料耗盡後,發生引力坍缩而形成。黑洞的質量是如此之大,它产生的引力场是如此之强,以致于大量可測物质和辐射都无法逃逸,就連传播速度極快的光子也逃逸不出來。由于类似热力学上完全不反射光线的黑体,故名黑洞。在黑洞的周圍,是一個無法偵測的事件視界,標誌著無法返回的臨界點,而在黑洞中心有一個密度趨近於無限的奇異點。 當恆星內部氫元素全部核融合完畢時,因燃料用完無法抵抗自身重力而開始向內塌陷,但隨著壓力越來越高,內部的重元素會重新開始燃燒導致瞬間膨脹,這時恆星的體積將暴增至原先的數十倍至百倍,這便是紅巨星,質量更大的恆星則會發生超新星爆炸,無論是紅巨星或是超新星,都會將外部物質全部吹飛,直到連重元素也燒完時,重力又會使得恆星繼續向內塌陷,最後形成一顆與月球差不多大小的白矮星,質量稍大的恆星則會形成中子星,會放出規律的電磁波,至於質量更大的恆星則會繼續塌陷,強大的重力使周圍的空間產生扭曲,最後形成一個密度每立方公分約一億噸的天體:「黑洞」。直至目前為止,所發現質量最小的黑洞大約有3.8倍太陽質量。 黑洞無法直接觀測,但可以藉由間接方式得知其存在與質量,並且觀測到它對其他事物的影響。藉由物體被吸入之前因高熱而放出紫外線和X射線的「邊緣訊息」,可以獲取黑洞的存在的訊息。推測出黑洞的存在也可藉由間接觀測恆星或星際雲氣團繞行黑洞軌跡,來取得位置以及質量。 黑洞是天文物理史上,最引人注目的題材之一,在科幻小說、電影甚至報章媒體經常可見將黑洞作為素材。迄今,黑洞的存在已得到天文學界和物理學界的绝大多數研究者所認同,並且天文界不時提出於宇宙中觀測到已存在的黑洞。 根據英國物理學者史蒂芬·霍金於2014年1月26日的論據:愛因斯坦的重力方程式的兩種奇點的解,分別是黑洞跟白洞。不過理論上黑洞應該是一種「有進沒出」的天體,而白洞則只能出而不能進。然而黑洞卻有粒子的輻射,所以不再適合稱其名為黑洞,而應該改其名為「灰洞」,先前認為黑洞可以毀滅資訊情報的看法,是他「最大的失誤」。.
PSR B1257+12
PSR 1257+12(PSR B1257+12)是一顆位於室女座的脈衝星,距離地球大約980光年。這顆恆星受到注意的地方,在於人們相信它擁有四顆行星,同時它們也是首批被發現的太陽系外行星。 這顆脈衝星最先於1990年由波蘭天文學家亞歷山大·沃爾茲森(Aleksander Wolszczan),於1990年以位於波多黎各阿雷西博的射電望遠鏡發現的。它屬於毫秒脈衝星,為中子星的一種,自轉週期為6.22毫秒,但他卻發現其脈衝信號出現不尋常,遂對它作更深入的觀測。.
PSR B1257+12和中子星 · PSR B1257+12和脉冲星 ·
SN 1054
天關客星(編號:SN 1054),是1054年金牛座內爆發的一顆超新星,古代中國和阿拉伯的天文學家在史書中對這顆星留下了詳細的記錄。因該星星突然出現在天關星(金牛座ζ)附近,故名天關客星。 《宋史‧天文志》中載: 至和元年五月己丑也就是1054年7月4日。 《宋史‧仁宗本紀》中載: 《續資治通鑒長編》卷一七六中載: 《宋會要》卷五十二中記載: 根據中國史籍中的記錄可以推斷,這顆超新星在23天的時間內白天都可以見到,在夜晚可見的時間則持續了一年十個月。據研究,這顆星可能是Ⅱ型超新星。天關客星爆炸後的遺骸形成了蟹狀星雲,在1774年收錄在梅西耶天體列表中成為第1號天體(蟹狀星雲M1,NGC 1952)。 在人类有文字记载的历史上,观测到银河系内的超新星爆发的机会非常少。除了蟹状星云以外,还有被第谷和他的学生开普勒观测到的第谷超新星与开普勒超新星。据天文学家推算,银河系内的超新星爆发平均20-50年出现一次。但是大都发生在银核内部,或者在银盘的另一半完全被银核遮挡。蟹状星云的超新星爆发,恰巧发生在银河系内与太阳同一侧银盘上但是比太阳系更远离银核的外侧。这样的部位发生超新星爆发,从地球上观测完全没有遮挡,但是这样机会就极为罕见。 20世纪早期,对早期间隔数年的星雲照片进行分析表明,它正在不断膨胀。根据其膨胀速度反推可得,该星云在地球上开始可见的时间至少在900年以前。而中国天文学家1054年的记录过在天空的相同区域产生过一颗亮星,甚至白天都可观测到。由于距离十分遥远,当时中国人观测到的白天的“客星”只可能是超新星。这是一种核聚变已耗尽能量并自行坍缩,从而发生爆炸的巨大恒星。 近期对历史记载的分析表明,产生蟹状星云的超新星爆发时间为4月或5月上旬,到了7月最亮时视星等升至−7到−4.5之间(比夜空中除了月球以外的任何天体都亮)。该超新星在首次发现大约两年之内都可用肉眼看到。归功于东亚地区和中东地区天文学家1054年记录的观测,蟹状星云成为第一个被确认与超新星爆发有关的天体。.
恆星演化
恆星演化是恆星在生命過程中所經歷急遽變化的序列。恆星依據質量,一生的範圍從質量最大的恆星只有幾百萬年,到質量最小的恆星比宇宙年齡還要長的數兆年。右方的表顯示質量和恆星壽命的關聯性。所有的恆星都從通常被稱為星雲或分子雲的氣體和塵埃坍縮中誕生。在幾百萬年的過程中,原恆星達到平衡的狀態,安頓下來成為所謂的主序星。 恆星大部分的生命期都在以核融合產生能量的狀態。最初,主序星在核心將氫融合成氦來產生能量,然後,氦原子核在核心中佔了優勢。像太陽這樣的恆星會從核心開始以一層一層的球殼將氫融合成氦。這個過程會使恆星的大小逐漸增加,通過次巨星的階段,直到達到紅巨星的狀態。質量不少於太陽一半的恆星也可以經由將核心的氢融合成氦來產生能量,質量更重的恆星可以依序以同心圓產生質量更重的元素。像太陽這樣的恆星用盡了核心的燃料之後,其核心會塌縮成為緻密的白矮星,並且外層會被驅離成為行星狀星雲。質量大約是太陽的10倍或更重的恆星,在它缺乏活力的鐵核塌縮成為密度非常高的中子星或黑洞時會爆炸成為超新星。雖然宇宙的年齡還不足以讓質量最低的紅矮星演化到它們生命的尾端,恆星模型認為它們在耗盡核心的氫燃料前會逐漸變亮和變熱,然後成為低質量的白矮星The End of the Main Sequence, Gregory Laughlin, Peter Bodenheimer, and Fred C. Adams, The Astrophysical Journal, 482 (June 10, 1997), pp.
上面的列表回答下列问题
- 什么中子星和脉冲星的共同点。
- 什么是中子星和脉冲星之间的相似性
中子星和脉冲星之间的比较
中子星有66个关系,而脉冲星有44个。由于它们的共同之处17,杰卡德指数为15.45% = 17 / (66 + 44)。
参考
本文介绍中子星和脉冲星之间的关系。要访问该信息提取每篇文章,请访问: