我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

丟番圖逼近和平方根

快捷方式: 差异相似杰卡德相似系数参考

丟番圖逼近和平方根之间的区别

丟番圖逼近 vs. 平方根

丢番图分析是数论的一个分支。最经典的丢番图逼近主要用於有理数逼近实数,亦即实数的有理逼近相关问题。其中有理数一般用分数形式表达,且一律要求分子为整数,分母为正整数,通常要求是既约分数。 "丢番图逼近"的名称源于古希腊数学家丢番图。这是因为有理逼近可以归结为求不等式整数解的问题,而求方程整数解的问题一般称为丢番图方程(或不定方程),故而得名。事实上,丢番图逼近与不定方程的研究确有颇多相关。 丢番图逼近的首要问题是寻求实数的最佳(有理)丢番图逼近,简称最佳逼近。具体来说,对于一个实数 \alpha,希望找到一个"最优"的有理数 p/q 作为 \alpha 的近似,使在分母不超过 q 的所有有理数中,p/q 与 \alpha 的距离最小。这里的"距离"可以是欧氏距离,即两数之差的绝对值;也可以用 |q\alpha-p| 等方式度量。满足此类要求的有理数 p/q 称为实数 \alpha 的一个最佳逼近。关于如何寻找实数的最佳逼近及相关论题,已于18世纪随着连分数理论的发展得到基本解决。 其后,该领域的主要注意力转向对有理逼近的误差进行估计、度量,以给出尽可能精确的上下界(一般用分母的函数表示)。作为分母的函数, 这种上下界的阶与 \alpha 的性质密切相关。当 \alpha 分别为有理数、代数数、超越数时,其最佳逼近误差下界的阶是不同的。基于这种思想,刘维尔在1844年建立了有关代数数逼近的一个基本结论,并由此具体地构造出了一个超越数(参见刘维尔数),证明了它的超越性。这在人类历史上尚属首次。由此可见,丢番图逼近与数论的另一分支——超越数论紧密相关。 除了上述最经典的单个实数的有理逼近问题,该领域还包括多个实数的联立逼近,非齐次逼近,实数的代数数逼近,一致分布(均匀分布)等方面。甚至连p进数上的丢番图逼近也有颇多研究。. 在數學中,一個數x的平方根y指的是滿足y^2.

之间丟番圖逼近和平方根相似

丟番圖逼近和平方根有(在联盟百科)4共同点: 实数互質连分数有理数

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

丟番圖逼近和实数 · 实数和平方根 · 查看更多 »

互質

互质(英文:coprime,符號:⊥,又稱互素、relatively prime、mutually prime、co-prime)。在數論中,如果兩個或兩個以上的整數的最大公因數是 1,則稱它們為互质。依此定義:.

丟番圖逼近和互質 · 互質和平方根 · 查看更多 »

连分数

在数学中,连分数或繁分数即如下表达式: 这里的a_0是某个整数,而所有其他的数a_n都是正整数,可依樣定义出更长的表达式。如果部分分子(partial numerator)和部分分母(partial denominator)允许假定任意的值,在某些上下文中可以包含函数,则最終的表达式是广义连分数。在需要把上述标准形式與广义连分数相區別的时候,可稱它為简单或正规连分数,或称为是规范形式的。.

丟番圖逼近和连分数 · 平方根和连分数 · 查看更多 »

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

丟番圖逼近和有理数 · 平方根和有理数 · 查看更多 »

上面的列表回答下列问题

丟番圖逼近和平方根之间的比较

丟番圖逼近有21个关系,而平方根有73个。由于它们的共同之处4,杰卡德指数为4.26% = 4 / (21 + 73)。

参考

本文介绍丟番圖逼近和平方根之间的关系。要访问该信息提取每篇文章,请访问: