之间丟番圖方程和连分数相似
丟番圖方程和连分数有(在联盟百科)4共同点: 丟番圖逼近,無理數,最大公因數,整数。
丟番圖逼近
丢番图分析是数论的一个分支。最经典的丢番图逼近主要用於有理数逼近实数,亦即实数的有理逼近相关问题。其中有理数一般用分数形式表达,且一律要求分子为整数,分母为正整数,通常要求是既约分数。 "丢番图逼近"的名称源于古希腊数学家丢番图。这是因为有理逼近可以归结为求不等式整数解的问题,而求方程整数解的问题一般称为丢番图方程(或不定方程),故而得名。事实上,丢番图逼近与不定方程的研究确有颇多相关。 丢番图逼近的首要问题是寻求实数的最佳(有理)丢番图逼近,简称最佳逼近。具体来说,对于一个实数 \alpha,希望找到一个"最优"的有理数 p/q 作为 \alpha 的近似,使在分母不超过 q 的所有有理数中,p/q 与 \alpha 的距离最小。这里的"距离"可以是欧氏距离,即两数之差的绝对值;也可以用 |q\alpha-p| 等方式度量。满足此类要求的有理数 p/q 称为实数 \alpha 的一个最佳逼近。关于如何寻找实数的最佳逼近及相关论题,已于18世纪随着连分数理论的发展得到基本解决。 其后,该领域的主要注意力转向对有理逼近的误差进行估计、度量,以给出尽可能精确的上下界(一般用分母的函数表示)。作为分母的函数, 这种上下界的阶与 \alpha 的性质密切相关。当 \alpha 分别为有理数、代数数、超越数时,其最佳逼近误差下界的阶是不同的。基于这种思想,刘维尔在1844年建立了有关代数数逼近的一个基本结论,并由此具体地构造出了一个超越数(参见刘维尔数),证明了它的超越性。这在人类历史上尚属首次。由此可见,丢番图逼近与数论的另一分支——超越数论紧密相关。 除了上述最经典的单个实数的有理逼近问题,该领域还包括多个实数的联立逼近,非齐次逼近,实数的代数数逼近,一致分布(均匀分布)等方面。甚至连p进数上的丢番图逼近也有颇多研究。.
丟番圖方程和丟番圖逼近 · 丟番圖逼近和连分数 ·
無理數
無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.
最大公因數
数学中,兩個或多個整數的最大公因數(greatest common factor,hcf)指能够整除这些整数的最大正整数(这些整数不能都为零)。例如8和12的最大公因数为4。最大公因数也称最大公约数(greatest common divisor,gcd)。 整数序列a的最大公因数可以記為(a_1, a_2, \dots, a_n)或\gcd(a_1, a_2, \dots, a_n)。 求兩個整數最大公因數主要的方法:.
丟番圖方程和最大公因數 · 最大公因數和连分数 ·
整数
整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.
上面的列表回答下列问题
- 什么丟番圖方程和连分数的共同点。
- 什么是丟番圖方程和连分数之间的相似性
丟番圖方程和连分数之间的比较
丟番圖方程有19个关系,而连分数有30个。由于它们的共同之处4,杰卡德指数为8.16% = 4 / (19 + 30)。
参考
本文介绍丟番圖方程和连分数之间的关系。要访问该信息提取每篇文章,请访问: