之间丟番圖方程和輾轉相除法相似
丟番圖方程和輾轉相除法有(在联盟百科)7共同点: 劍橋大學出版社,多項式,無理數,貝祖等式,费马大定理,最大公因數,整数。
劍橋大學出版社
劍橋大學出版社(Cambridge University Press)隸屬於英國劍橋大學,成立於1534年,是世界上僅次於牛津大學出版社的第二大大學出版社。.
丟番圖方程和劍橋大學出版社 · 劍橋大學出版社和輾轉相除法 ·
多項式
多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.
無理數
無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.
貝祖等式
在数论中,裴蜀等式(Bézout's identity)或貝祖定理(Bézout's lemma)是一个关于最大公约数(或最大公约式)的定理。裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整數a、b和m,关于未知数x和y的線性丟番圖方程(称为裴蜀等式): 有整数解时当且仅当m是a及b的最大公约数d的倍数。裴蜀等式有解时必然有无穷多个整数解,每组解x、y都稱為裴蜀數,可用擴展歐幾里得演算法求得。 例如,12和42的最大公因數是6,则方程12x+42y.
丟番圖方程和貝祖等式 · 貝祖等式和輾轉相除法 ·
费马大定理
费马大定理,也称費馬最後定理(Le dernier théorème de Fermat);(Fermat's Last Theorem),其概要為: 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬大定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。.
最大公因數
数学中,兩個或多個整數的最大公因數(greatest common factor,hcf)指能够整除这些整数的最大正整数(这些整数不能都为零)。例如8和12的最大公因数为4。最大公因数也称最大公约数(greatest common divisor,gcd)。 整数序列a的最大公因数可以記為(a_1, a_2, \dots, a_n)或\gcd(a_1, a_2, \dots, a_n)。 求兩個整數最大公因數主要的方法:.
整数
整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.
上面的列表回答下列问题
- 什么丟番圖方程和輾轉相除法的共同点。
- 什么是丟番圖方程和輾轉相除法之间的相似性
丟番圖方程和輾轉相除法之间的比较
丟番圖方程有19个关系,而輾轉相除法有140个。由于它们的共同之处7,杰卡德指数为4.40% = 7 / (19 + 140)。
参考
本文介绍丟番圖方程和輾轉相除法之间的关系。要访问该信息提取每篇文章,请访问: