之间丟番圖方程和方程相似
丟番圖方程和方程有(在联盟百科)10共同点: 多項式,希腊,亚历山大港,勾股定理,四平方和定理,等于,變數,貝祖等式,费马大定理,整数。
多項式
多项式(Polynomial)是代数学中的基础概念,是由称为未知数的变量和称为系数的常数通过有限次加减法、乘法以及自然数幂次的乘方运算得到的代数表达式。多项式是整式的一种。未知数只有一个的多项式称为一元多项式;例如x^2-3x+4就是一个一元多项式。未知数不止一个的多项式称为多元多项式,例如就是一個三元多项式。 可以写成只由一项构成的多项式也称为单项式。如果一项中不含未知数,则称之为常数项。 多项式在数学的很多分支中乃至许多自然科学以及工程学中都有重要作用。.
希腊
希腊(Ελλάδα,),官方名称为希腊共和国(希腊语:Ελληνική Δημοκρατία,),位于欧洲东南部的跨大洲国家。2015年其人口约为1,090万。雅典为希腊首都及最大城市,塞萨洛尼基为第二大城市。 希腊位于欧洲、亚洲和非洲的十字路口,战略地位重要。其位于巴尔干半岛南端,西北邻阿尔巴尼亚,北部邻马其顿共和国和保加利亚,东北邻土耳其。希腊分为九个地区:马其顿、中希腊、伯罗奔尼撒、色萨利、伊庇鲁斯、爱琴海诸岛(包括十二群岛及基克拉泽斯)、色雷斯、克里特和伊奥尼亚群岛。爱琴海位于希腊本土东侧,爱奥尼亚海位于西侧,克里特海和地中海位于南侧。希腊海岸线长达,为地中海盆地国家中最长,世界第11长。希腊拥有大量岛屿,其中227个岛屿有人居住。其百分之八十区域为山地,奥林波斯山为全境最高峰,海拔。 希腊为世界历史最悠久的国家之一,自公元前270,000年起即有人居住。其被称作西方文明的摇篮,为民主制度、西方哲学、奥林匹克运动会、西方文学、史学、政治学、重要科学及数学原理、西方戏剧(悲剧及喜剧)的发源地。公元前4世纪马其顿腓力二世首先统一了希腊。其子亚历山大大帝迅速征服了古代世界的大片地区,将希腊文化和科学自东地中海地区传播至印度河流域。公元前2世纪希腊为罗马所吞并,成为罗马帝国及其继承国拜占庭帝国的核心组成部分,其中后者为希腊语言及文化所主导。公元1世纪希腊正教会建立起来,塑造了现代希腊的文化认同,并将希腊传统传播至正教世界。15世纪中叶,奥斯曼帝国夺取了希腊地区。1830年,在经历独立战争后,希腊作为现代民族国家建立起来。希腊的文化遗产由其18个联合国教科文组织世界遗产数可见一斑,这一数目在欧洲及世界均居前列。 希腊为民主制国家,发达国家及高收入经济体,其生活质量较高,及人类发展指数为极高。希腊为联合国创始国之一,为欧洲共同体(欧洲联盟前身)第十个成员国,并自2001年以来为欧元区成员国。其亦为诸多国际组织的成员国,包括欧洲委员会、北大西洋公约组织、经济合作与发展组织、世界贸易组织、欧洲安全与合作组织及法语圈国际组织。希腊的独特文化地位、旅游业、船运业及战略地位使其被归为一中等强国。其为巴尔干地区最大规模经济体,并为这一区域重要的投资者之一。.
亚历山大港
亚历山大港(Αλεξάνδρεια;科普特语:Ⲣⲁⲕⲟⲧⲉ(Rakote);الإسكندرية),又譯亞歷山卓,埃及第二大城市、亚历山大省省会,地中海岸的港口、非洲重要的海港。其地理位置是北纬31°12',东经29°15',离开罗西北208千米。尼罗河多支的、现已干枯的入海口位于亚历山大港东19千米处,古城卡诺珀斯的遗蹟就在那裡。今天亚历山大港有约334万居民。 亚历山大港是按其奠基人亚历山大大帝命名的,它是托勒密王朝的首都,很快就成为古希腊文化中最大的城市。在西方古代史中其规模和财富仅次于罗马。雖然埃及的伊斯兰教统治者在奠定了开罗为埃及的新首都后亚历山大港的地位不断下降。但在十九世紀末期,亞歷山大港躍升為世界主要的船運及交易中心之一,蓬勃的棉花業與連接紅海和地中海地區的優越地理位置帶給這個城市豐厚的利潤。 今天的亞歷山大港靠著從蘇伊士來的天然氣和石油運輸管線成為埃及的重要工業中心。這個城市同時也有著蓬勃的觀光業。.
丟番圖方程和亚历山大港 · 亚历山大港和方程 ·
勾股定理
氏定理(Pythagorean theorem)(希腊语:Πυθαγόρειο θεώρημα)又称商高定理、畢達哥拉斯定理、--、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。 勾股定理是人类早期发现并证明的重要数学定理之一。 据《周髀算經》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,“以为句广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法后世不明其法而被忽略。 此外,《周髀算经》中明确记载了周公后人陈子叙述的勾股定理公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”。 赵爽在《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦”。 古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。 有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。.
丟番圖方程和勾股定理 · 勾股定理和方程 ·
四平方和定理
四平方和定理 (Lagrange's four-square theorem) 說明每个正整数均可表示为4个整数的平方和。它是費馬多邊形數定理和華林問題的特例。 注意有些整數不可表示為3個整數的平方和,例如7。.
等于
数学上,两个数学对象是相等的,若他们在各个方面都相同。这就定义了一个二元谓词等于,写作“.
變數
在初等數學裡,變數或變元、元是一個用來表示值的符號,該值可以是隨意的,也可能是未指定或未定的。在代數運算時,將變數當作明確的數值代入運算中,可以於單次運算時解出多個問題。一個典型的例子為一元二次公式,該公式可以解出每個一元二次方程的值,只需要將方程的系數代入公式中的變數即可。 變數這個概念在微積分中非常重要。一般,一個函數y.
貝祖等式
在数论中,裴蜀等式(Bézout's identity)或貝祖定理(Bézout's lemma)是一个关于最大公约数(或最大公约式)的定理。裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整數a、b和m,关于未知数x和y的線性丟番圖方程(称为裴蜀等式): 有整数解时当且仅当m是a及b的最大公约数d的倍数。裴蜀等式有解时必然有无穷多个整数解,每组解x、y都稱為裴蜀數,可用擴展歐幾里得演算法求得。 例如,12和42的最大公因數是6,则方程12x+42y.
丟番圖方程和貝祖等式 · 方程和貝祖等式 ·
费马大定理
费马大定理,也称費馬最後定理(Le dernier théorème de Fermat);(Fermat's Last Theorem),其概要為: 以上陳述由17世纪法国数学家费马提出,一直被稱為「费马猜想」,直到英國數學家安德魯·懷爾斯(Andrew John Wiles)及其學生理查·泰勒(Richard Taylor)於1995年將他們的證明出版後,才稱為「費馬大定理」。這個猜想最初出現費馬的《頁邊筆記》中。儘管費馬表明他已找到一個精妙的證明而頁邊没有足夠的空位寫下,但仍然經過數學家們三個多世紀的努力,猜想才變成了定理。在衝擊這個数论世紀难题的過程中,無論是不完全的還是最後完整的證明,都給數學界帶來很大的影響;很多的數學結果、甚至數學分支在這個過程中誕生了,包括代數幾何中的橢圓曲線和模形式,以及伽羅瓦理論和赫克代數等。這也令人懷疑當初費馬是否真的找到了正確證明。而安德魯·懷爾斯由於成功證明此定理,獲得了包括邵逸夫獎在内的数十个奖项。.
丟番圖方程和费马大定理 · 方程和费马大定理 ·
整数
整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.
上面的列表回答下列问题
- 什么丟番圖方程和方程的共同点。
- 什么是丟番圖方程和方程之间的相似性
丟番圖方程和方程之间的比较
丟番圖方程有19个关系,而方程有57个。由于它们的共同之处10,杰卡德指数为13.16% = 10 / (19 + 57)。
参考
本文介绍丟番圖方程和方程之间的关系。要访问该信息提取每篇文章,请访问: