我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

三重积和范数

快捷方式: 差异相似杰卡德相似系数参考

三重积和范数之间的区别

三重积 vs. 范数

三重积,又稱混合積,是三个向量相乘的結果。向量空間中,有两种方法将三个向量相乘,得到三重积,分別稱作标量三重积和向量三重积。. 數(norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。半範數反而可以為非零的向量賦予零長度。 舉一個簡單的例子,一個二維度的歐氏幾何空間\R^2就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。 擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。.

之间三重积和范数相似

三重积和范数有(在联盟百科)3共同点: 向量向量空间绝对值

向量

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.

三重积和向量 · 向量和范数 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

三重积和向量空间 · 向量空间和范数 · 查看更多 »

绝对值

絕對值用來表示一個數至原點的距離之大小。絕對值的概念也可以定義在複數、有序環以及域上。.

三重积和绝对值 · 绝对值和范数 · 查看更多 »

上面的列表回答下列问题

三重积和范数之间的比较

三重积有12个关系,而范数有27个。由于它们的共同之处3,杰卡德指数为7.69% = 3 / (12 + 27)。

参考

本文介绍三重积和范数之间的关系。要访问该信息提取每篇文章,请访问: