我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

三角形函数和窗函数

快捷方式: 差异相似杰卡德相似系数参考

三角形函数和窗函数之间的区别

三角形函数 vs. 窗函数

三角形函数定义为: \begin 1 - |t|; & |t| 或者定义为两个相同的单位矩形函数的卷积: 在信号处理以及通信系统工程领域三角形函数是一个非常有用的理想信号表示,也是用于导出其它理想信号的原型信号。在脉冲编码调制中作为数字信号传输的脉冲波形以及信号接收时作为匹配滤波器使用。另外,它也等同于叫作Bartlett window的三角形窗。 三角形函数的傅里叶变换, |\frac\int_^\infty \textrm(t)e^ \, dt |. 在信号处理中,窗函数(window function)是一种除在给定区间之外取值均为0的实函数。譬如:在给定区间内为常数而在区间外为0的窗函数被形象地称为矩形窗。任何函数与窗函数之积仍为窗函数,所以相乘的结果就像透过窗口“看”其他函数一样。窗函数在频谱分析、滤波器设计、波束形成、以及音频数据压缩(如在Ogg Vorbis音频格式中)等方面有广泛的应用。.

之间三角形函数和窗函数相似

三角形函数和窗函数有(在联盟百科)2共同点: 信号处理傅里叶变换

信号处理

在计算机科学、药物分析、电子学等学科中,信号处理(signal processing)是指对信号表示、变换、运算等进行处理的过程。 信号处理可以用于沟通人类之间,或人与机器之间的联系;用以探测我们周围的环境,并揭示出那些不易观察到的状态和构造细节,以及用来控制和利用能源与信息.例如,我们可能希望分开两个或多个多少有些混在一起的信号,或者想增强信号模型中的某些成分或参数。 几十年来,信号处理在诸如语音与資料通訊、生物医学工程、声学、声呐、雷达、地震、石油勘探、仪器仪表、机器人、日用电子产品以及其它很多的这样一些广泛的领域内起着关键的作用。.

三角形函数和信号处理 · 信号处理和窗函数 · 查看更多 »

傅里叶变换

傅里叶变换(Transformation de Fourier、Fourier transform)是一种線性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。 经傅里叶变换生成的函数 \hat f 称作原函数 f 的傅里叶变换、亦称频谱。在許多情況下,傅里叶变换是可逆的,即可通过 \hat f 得到其原函数 f。通常情况下,f 是实数函数,而 \hat f 则是复数函数,用一个复数来表示振幅和相位。 “傅里叶变换”一词既指变换操作本身(将函数 f 进行傅里叶变换),又指该操作所生成的复数函数(\hat f 是 f 的傅里叶变换)。.

三角形函数和傅里叶变换 · 傅里叶变换和窗函数 · 查看更多 »

上面的列表回答下列问题

三角形函数和窗函数之间的比较

三角形函数有9个关系,而窗函数有16个。由于它们的共同之处2,杰卡德指数为8.00% = 2 / (9 + 16)。

参考

本文介绍三角形函数和窗函数之间的关系。要访问该信息提取每篇文章,请访问: