我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

三角廣底球形屋根罩帳和凸集

快捷方式: 差异相似杰卡德相似系数参考

三角廣底球形屋根罩帳和凸集之间的区别

三角廣底球形屋根罩帳 vs. 凸集

三角廣底球形屋根--(J92, Triangular hebesphenorotunda)是约翰逊多面體的其中一個。它無法由柏拉圖立體(正多面體)和阿基米得立體(半正多面體)經過切割、增補而得來,是詹森多面體中的基本立體之一。 雖然如此,但他其實與截半二十面體(半正多面體的一種)有著不可分離的關係,最明顯的就是他們都有三個五邊形和四個三角群位於立體的其中一邊。如果將這些面與面一個個地被排列在截半二十面體上,那麼唯一的六邊形面就會位於平面上兩相對的三角形面中間。 這92種詹森多面體最早在1996年由(Norman Johnson)命名並給予描述。. 在点集拓扑学與欧几里得空间中,凸集(convex set)是一個點集合,其中每兩點之間的直线點都落在該點集合中。.

之间三角廣底球形屋根罩帳和凸集相似

三角廣底球形屋根罩帳和凸集有1共同点(的联盟百科): 顶点

顶点

顶点是数学和计算机科学等领域的术语,在不同的环境中有不同的意义。 在平面几何学中,顶点是指多边形两条边相交的地方,或指角的两条边的公共端点。 在立体几何学中,顶点是指在多面体中三个了了或更多的面连接的地方。 在图论中,顶点(vertex,node)可以理解为一个事物(object),而一张图则是由顶点的集合和顶点之间的连接构成的。 在计算机绘图中,顶点是空间中的一个点,一般由它的坐标表示。两个点可以确定一条直线,三个点可以确定一个平面。 在粒子物理学中,頂點是指粒子發生相互作用的點,例如LHC中兩粒子對撞產生反應的那個點就是頂點。.

三角廣底球形屋根罩帳和顶点 · 凸集和顶点 · 查看更多 »

上面的列表回答下列问题

三角廣底球形屋根罩帳和凸集之间的比较

三角廣底球形屋根罩帳有15个关系,而凸集有18个。由于它们的共同之处1,杰卡德指数为3.03% = 1 / (15 + 18)。

参考

本文介绍三角廣底球形屋根罩帳和凸集之间的关系。要访问该信息提取每篇文章,请访问: