我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

三角学和餘弦

快捷方式: 差异相似杰卡德相似系数参考

三角学和餘弦之间的区别

三角学 vs. 餘弦

三角学是數學的一個分支,主要研究三角形,以及三角形中边与角之间的关系。三角学定義了三角函數,可以描述三角形边与角的关系,而且都是周期函数,可以用來描述周期性的現象。三角学在西元前三世紀時開始發展,最早是幾何學的一個分支,廣泛的用在天文量測中,三角学也是測量學的基礎。 三角学的基礎是平面三角学,研究平面上的三角形中边与角之间的关系,分为角的度量、三角函数与反三角函数、诱导公式、和与差的公式、倍角、半角公式、和差化积与积化和差公式、解三角形等内容,可能會是單獨的一個科目或是在预科微积分教授,三角函數在純數學及應用數學中的許多領域中出現,例如傅立葉分析及波函數等,是許多科技領域的基礎。 三角学也包括球面三角學,研究球面上,由大圓的弧所包圍成的球面三角形,位在曲率為正值常數的曲面上,是橢圓幾何的一部份,球面三角學是天文學及航海的基礎,也在测量学、制图学、结晶学、仪器学等方面有广泛的应用。負曲率曲面上的三角学則是雙曲幾何中的一部份。. 余弦是三角函数的一种。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为2nπ(n为整数)时,该函数有极大值1;在自变量为(2n+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。.

之间三角学和餘弦相似

三角学和餘弦有(在联盟百科)6共同点: 三角函数周期函数勾股定理餘弦定理正弦正切

三角函数

三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。.

三角函数和三角学 · 三角函数和餘弦 · 查看更多 »

周期函数

在数学中,周期函数是無論任何独立变量上經過一个确定的周期之后数值皆能重复的函数。我们日常所见的钟表指针以及月亮的月相都呈现出周期性的特点。周期性运动是系统的运动位置呈现周期性的运动。 对于实数或者整数函数来说,周期性意味着按照一定的间隔重复一个特定部分就可以绘制出完整的函数图。如果在函数f中所有的位置x都满足 那么,f就是周期为T的周期函数。非周期函数就是没有类似周期T的函数。 如果周期函数f的周期为T,那么对于f中的任意x以及任意整数n,有 若T.

三角学和周期函数 · 周期函数和餘弦 · 查看更多 »

勾股定理

氏定理(Pythagorean theorem)(希腊语:Πυθαγόρειο θεώρημα)又称商高定理、畢達哥拉斯定理、--、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。 勾股定理是人类早期发现并证明的重要数学定理之一。 据《周髀算經》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素,其一,“以为句广三,股修四,径隅五”。其二,“既方其外,半之一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”首先肯定一个底宽为三,高为四的直角三角形,弦长必定是五。最重要的是紧接着论证了弦长平方必定是两直角边的平方和,确立了直角三角形两条直角边的平方和等于斜边平方的判定原则。其判定方法后世不明其法而被忽略。 此外,《周髀算经》中明确记载了周公后人陈子叙述的勾股定理公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”。 赵爽在《周髀算經注》中将勾股定理表述为“勾股各自乘,并之,为弦实。开方除之,即弦”。 古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。 有些參考資料提到法国和比利時將勾股定理称为驴桥定理,但驴桥定理就是等邊對等角,是指等腰三角形的二底角相等,非勾股定理。.

三角学和勾股定理 · 勾股定理和餘弦 · 查看更多 »

餘弦定理

余弦定理是三角形中三邊長度與一個角的余弦值(cos)的數學式,參考右圖,余弦定理指的是: 同樣,也可以將其改為: 其中c是\gamma角的對邊,而a和b是\gamma角的鄰邊。 勾股定理則是余弦定理的特殊情況,當\gamma為90^\circ時,\cos(\gamma).

三角学和餘弦定理 · 餘弦和餘弦定理 · 查看更多 »

正弦

在數學中,正弦(英語:sine、縮寫sin)是一種週期函數,是三角函数的一種。它的定义域是整个实数集,值域是。它是周期函数,其最小正周期为2π。在自变量为(4n+1)π/2(n为整数)时,该函数有极大值1;在自变量为(4n+3)π/2时,该函数有极小值-1。正弦函数是奇函数,其图像关于原点对称。.

三角学和正弦 · 正弦和餘弦 · 查看更多 »

正切

正切(Tangent,tan,东欧国家将其写作tg)是三角函数的一种。它的值域是整个实数集,定义域是整个。它是周期函数,其最小正周期为π。正切函数是奇函数。.

三角学和正切 · 正切和餘弦 · 查看更多 »

上面的列表回答下列问题

三角学和餘弦之间的比较

三角学有74个关系,而餘弦有15个。由于它们的共同之处6,杰卡德指数为6.74% = 6 / (74 + 15)。

参考

本文介绍三角学和餘弦之间的关系。要访问该信息提取每篇文章,请访问: