之间三角反棱柱和正四面體相似
三角反棱柱和正四面體有(在联盟百科)5共同点: 三角形,四面體,等腰三角形,正多面體,正八面體。
三角形
三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.
四面體
四面體是由四個三角形面組成的多面體,每两个三角形都有一个共同的边,每三个三角形都有一个共同的顶点。四面体有四个顶点,六条棱,四个面,是所有凸多面体中最简单的。四面體包括正四面體、鍥形體等種類,由四個全等的正三角形組成的四面體稱為正四面體。四面体也可以依角的類型分為銳角四面體、鈍角四面體、和直角四面體。 四面体是欧几里德单纯形在三维空间中的特例。 四面体也是锥体的一种。锥体是指将某个平面上的多面体的所有顶点分别和平面外的一点以线段连接後构成的多面体。按锥体的分类方法,所有四面體都是由某平面上的三角形和平面外一点构成的锥体,所以四面体也被称为三角錐。 与所有的凸多面体一样,四面体可以由某个平面图形(展开图)折叠而成。这样的展开图通常有两种。 与三角形类似,任何四面体的四个顶点都在同一个球面上。这个球称为四面体的外接球。同样地,存在一个与四面体的四个面都相切的球,称为四面体的内切球。.
等腰三角形
在幾何學中,等腰三角形(isosceles triangle)是指至少有兩邊等長或相等的三角形,因此會造成有2個角相等。相等的兩個邊稱等腰三角形的腰,另一邊稱為底邊,相等的兩個角稱為等腰三角形的底角,其餘的角叫做頂角《中學數學實用辭典》ISBN 957-603-093-5 九章出版。 等腰三角形的重心、中心和垂心都位於頂點向底邊的垂,可以把等腰三角形分成兩個全等的直角三角形。《圖解數學辭典》天下遠見出版 P.37 三角形 ISBN 986-417-614-5 等邊三角形是底邊和腰等長的等腰三角形,是等腰三角形的一個特殊形式。若等腰三角形的頂角為直角,稱為等腰直角三角形。.
正多面體
正多面體,或稱柏拉圖立體, 指各面都是全等的正多邊形且每一個頂點所接的面數都是一樣的凸多面體。 正多面體的別稱柏拉圖立體是因柏拉圖而命名的。柏拉圖的朋友泰阿泰德告訴柏拉圖這些立體,柏拉圖便將這些立體寫在《蒂邁歐篇》(Timaeus) 內。正多面體的作法收錄《几何原本》的第13卷。在命題13描述正四面體的作法;命題14為正八面體作法;命題15為立方體作法;命題16則是正二十面體作法;命題17則是正十二面體作法。.
三角反棱柱和正多面體 · 正四面體和正多面體 ·
正八面體
正八面體由八個等邊三角形,分別為上、下各四個三角形與一個正方形組成的正方錐體,上下黏合在一起而構成,是五種正多面體的第三種,有6個頂點和12條邊。正八面體也是正三角反棱柱。正八面体是三维的正轴形,施莱夫利符号,。 正八面體每四条棱可以成为一个正方形,共有三个独立的正方形。.
三角反棱柱和正八面體 · 正八面體和正四面體 ·
上面的列表回答下列问题
- 什么三角反棱柱和正四面體的共同点。
- 什么是三角反棱柱和正四面體之间的相似性
三角反棱柱和正四面體之间的比较
三角反棱柱有22个关系,而正四面體有55个。由于它们的共同之处5,杰卡德指数为6.49% = 5 / (22 + 55)。
参考
本文介绍三角反棱柱和正四面體之间的关系。要访问该信息提取每篇文章,请访问: