我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

三角函数和波

快捷方式: 差异相似杰卡德相似系数参考

三角函数和波之间的区别

三角函数 vs. 波

三角函数(Trigonometric functions)是数学中常见的一类关于角度的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 常见的三角函数包括正弦函数(\sin)、余弦函数(\cos)和正切函数(\tan或者\operatorname);在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。. 波或波动是扰动或物理信息在空间上传播的一种物理現象,扰动的形式任意,傳遞路徑上的其他介質也作同一形式振動。波的传播速度总是有限的。除了电磁波、引力波(又稱「重力波」)能够在真空中传播外,大部分波如机械波只能在介质中传播。波速與介質的彈性與慣性有關,但與波源的性質無關。.

之间三角函数和波相似

三角函数和波有(在联盟百科)4共同点: 微分方程簡諧運動頻率振幅

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

三角函数和微分方程 · 微分方程和波 · 查看更多 »

簡諧運動

谐运动(或简谐振动、谐振、SHM(Simple Harmonic Motion))即是最基本也是最简单的一种机械振动。当某物体进行简谐运动时,物体所受的力跟位移成正比,并且力总是指向平衡位置。 如果用F表示物体受到的回復力,用x表示物体对于平衡位置的位移,根据虎克定律,F和x成正比,它们之间的关系可用下式来表示: 式中的k是回复力与位移成正比的比例系数;负号的意思是:回复力的方向总跟物体位移的方向相反。 根据牛顿第二定律,F.

三角函数和簡諧運動 · 波和簡諧運動 · 查看更多 »

頻率

频率(Frequency)是单位时间内某事件重复发生的次数,在物理学中通常以符号f 或\nu表示。采用国际单位制,其单位为赫兹(英語:Hertz,简写为Hz)。设\tau时间内某事件重复发生n次,则此事件发生的频率为f.

三角函数和頻率 · 波和頻率 · 查看更多 »

振幅

振幅是在波动或振动中距离平衡位置或静止位置的最大位移。符号A,单位米。振幅屬於標量,振幅永为非負值(≥0)。 在下图中,位移“y”表示波的振幅。 系統振動中最大動態位移,稱為振幅。 概念辨析(振幅≠幅度):.

三角函数和振幅 · 振幅和波 · 查看更多 »

上面的列表回答下列问题

三角函数和波之间的比较

三角函数有100个关系,而波有47个。由于它们的共同之处4,杰卡德指数为2.72% = 4 / (100 + 47)。

参考

本文介绍三角函数和波之间的关系。要访问该信息提取每篇文章,请访问: