我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

Π介子和重子列表

快捷方式: 差异相似杰卡德相似系数参考

Π介子和重子列表之间的区别

Π介子 vs. 重子列表

在粒子物理学中,π介子是以下三种次原子粒子之一:π+、π0和π−。π介子是最重要的介子之一,在揭示强核力的低能量特性中起着重要的作用。. 重子由三個夸克組成,相較之下介子則是由夸克-反夸克對所組成。重子與介子都屬於强子,意即單純由夸克或同時由夸克和反夸克所組成的粒子。重子的英文名稱「baryon」是來自希腊语中的「βαρύς」,意為「重的」,因為在命名當時,重子具有比其他物質粒子還要大的質量被認為是其特性之一。 直到近幾年,部分實驗證實了五夸克態粒子的存在,亦即由四個夸克與一個反夸克所組成的重子。2015年7月13日,歐洲核子研究組織的LHCb團隊宣布,在底Λ粒子衰變模式中找到了與五夸克態吻合的結果。 因為重子是由夸克所組成的,它們也會參與强相互作用。相對而言,不是由夸克所組成的輕子就不會參與强相互作用了。著名的重子包含質子和中子,它們組成了宇宙中大多數的可見物质,然而另一個主要組成原子的粒子,也就是电子,則屬於輕子。每個重子都有各自相對應的反粒子,稱為反重子,其中,夸克被替換成了對應的反夸克。例如,一個質子是由兩個上夸克與一個下夸克所組成,而其對應的反粒子,亦即反質子,則是由兩個反上夸克與一個反下夸克所組成。.

之间Π介子和重子列表相似

Π介子和重子列表有(在联盟百科)13共同点: 基本电荷反粒子同位旋夸克夸克模型介子强相互作用光速粲数粒子列表电子輕子電子伏特

基本电荷

基本电荷(符号:e,也称元电荷),是一个质子所带的电荷,或一个电子所带的负电荷的量。它是一个基本物理常数,是原子单位和一些其它自然单位制中的电荷单位。 根据国际科学技术数据委员会所公布,基本电荷的值大约为 在高斯單位制中,它的值为 自从1909年罗伯特·密立根的油滴实验中测量出基本电荷后,人们便认为它不可再分了。1960年发现了夸克,它们的电荷为1⁄3 e和2⁄3 e,所以把“基本电荷”用来指电子的电荷便不完全正确了;然而单独的夸克至今没有探测到,都是两个以上的夸克聚集在一起,使得总电荷为基本电荷的整数倍。.

Π介子和基本电荷 · 基本电荷和重子列表 · 查看更多 »

反粒子

反粒子是相对于正常粒子而言的,它们的质量、寿命、自旋都与正常粒子相同,但是所有的内部相加性量子数(比如电荷、重子数、奇异数等)都与正常粒子大小相同、符号相反。有一些粒子的所有内部相加性量子数都为0,这样的粒子叫做纯中性粒子,反粒子就是它本身,比如光子、π0介子等。并不是粒子物理学中的每种粒子都有这种意义上的反粒子,中微子就没有反粒子,反微中子的定义与此不同。 反粒子的概念首先是1928年由英国物理学家狄拉克在他的空穴理论中提出的。1932年在宇宙射线中发现了正电子,证实了狄拉克的预言。1956年美国物理学家歐文·張伯倫(Owen Chamberlain)在劳伦斯-伯克利国家实验室发现了反质子。进一步的研究发现,狄拉克的空穴理论对玻色子不适用,因而不能解释所有的粒子和反粒子。根据量子场论,粒子被看作是场的激发态,而反粒子就是这种激发态对应的复共轭激发态。 如果反粒子按照通常粒子那样结合起来就形成了反原子。由反原子构成的物质就是反物质。.

Π介子和反粒子 · 反粒子和重子列表 · 查看更多 »

同位旋

同位旋(Isospin),为与强相互作用相关的量子数。1932年,海森堡为解释新发现中子的对称性而引入同位旋。对于强力相同而电荷不同的粒子,可以看作是相同粒子处在不同的电荷状态,我们用同位旋来描述这种状态。同位旋并不是自旋,也不具有角动量的单位。它是无量纲的一个物理量。之所以叫做“同位旋”,只是因为其数学描述与自旋很类似。 在强相互作用过程中,同位旋守恒,但在弱相互作用、电磁相互作用过程中,同位旋不一定守恒。强子的同位旋反映了组成强子的上夸克和下夸克之间的对称性。 同位旋守恒是味守恒的一种。 Category:味量子數.

Π介子和同位旋 · 同位旋和重子列表 · 查看更多 »

夸克

夸克(quark,又譯“层子”或「虧子」)是一種基本粒子,也是構成物質的基本單元。夸克互相結合,形成一種複合粒子,叫強子,強子中最穩定的是質子和中子,它們是構成原子核的單元。由於一種叫“夸克禁閉”的現象,夸克不能夠直接被觀測到,或是被分離出來;只能夠在強子裏面找到夸克 。因為這個原因,人類對夸克的所知大都是來自對強子的觀測。 夸克有六種“味”,分別是上、下、-zh-tw:魅;zh-cn:粲-、奇、底及頂 。上及下夸克的質量是所有夸克中最低的。較重的夸克會通過一個叫粒子衰變的過程,來迅速地變成上或下夸克。粒子衰變是一個從高質量態變成低質量態的過程。就是因為這個原因,上及下夸克一般來說很穩定,所以它們在宇宙中很常見,而奇、--、頂及底則只能經由高能粒子的碰撞產生(例如宇宙射線及粒子加速器)。 夸克有着多種不同的內在特性,包括電荷、色荷、自旋及質量等。在標準模型中,夸克是唯一一種能經受全部四種基本相互作用的基本粒子,基本相互作用有時會被稱為“基本力”(電磁相互作用力、萬有引力、強相互作用力及弱相互作用力)。夸克同時是現時已知唯一一種基本電荷非整數的粒子。夸克每一種味都有一種對應的反粒子,叫反夸克,它跟夸克的不同之處,只在於它的一些特性跟夸克大小一樣但正負不同。 夸克模型分別由默里·蓋爾曼與喬治·茨威格於1964年獨立地提出 。引入夸克這一概念,是為了能更好地整理各種強子,而當時並沒有甚麼能證實夸克存在的物理證據,直到1968年SLAC開發出實驗為止 。夸克的六種味已經全部被加速器實驗所觀測到;而於1995年在費米實驗室被觀測到的頂夸克,是最後發現的一種。.

Π介子和夸克 · 夸克和重子列表 · 查看更多 »

夸克模型

在粒子物理學上,夸克模型(Quark Model)是一種根據強子內價夸克種類的強子分類方案,而價夸克就是強子內的夸克和反夸克,它們是強子量子數的源頭。夸克是“SU(3)味對稱”或八重道的基礎,這個分類方案成功將1950至60年代所發現的的大量較輕的強子妥當編組。它在1960年代後期得到了實驗確認,至今仍是一套既正確又有效的分類法。夸克模型在1964年分別由默里·蓋爾曼 和喬治·茨威格獨立提出 (另見)。時至今日,夸克模型已被標準模型所吸收,並成為了它的一部份,標準模型指的是已確立的強相互作用和電弱相互作用的量子場論。 強子並不“基本”,並可被視為“價夸克”及其反夸克的束縛態,而“價夸克”及其反夸克就是強子量子數的源頭。這些量子數是識別強子的標籤,可分為兩種。一種從龐加萊對稱J^而來,其中J、P和C分別代表總角動量、宇稱和電荷共軛對稱。 而其餘的則是味量子數,例如同位旋、奇異數和魅數等如此類推。把夸克束縛在一起的強相互作用並不會受到味量子數的影響,因此在同一味多重態的不同味量子數組成的強子能擁有系統性的質量和耦合關係。 所有夸克的重子數皆被定為。上、魅和頂夸克的電荷為+,而下、奇和底夸克的電荷則為-。反夸克的全部量子數相反。夸克的自旋為,因此是費米子。由於每一夸克和反夸克都各自遵守蓋爾曼-西島關係,因此它們加總而成的集合亦都會遵守該關係。 介子是由價夸克─反夸克對所組成(因此強子數為0),而重子則由三個夸克組成(因此強子數為1)。本條目所討論的是上、下、奇這三種味的夸克模型(形成味的SU(3)近似對稱)。也有較多味的通用化夸克模型。.

Π介子和夸克模型 · 夸克模型和重子列表 · 查看更多 »

介子

介子是自旋为整数、重子数为零的强子,参与强相互作用。介子属于强子类。它是比电子重的带电或不带电的粒子。 根据夸克模型,介子是由一个夸克和一个反夸克组成的束缚态,这一对夸克和反夸克可以是不同味的,例如π+=(ud¯),π-=(ūd),J/ψ=(cc),F=(cs)等。 自旋为0的介子,在量子场论中是用标量波函数描述,根据其宇称为-1或+1分别称为赝标介子和标量介子。自旋为1的介子,在量子场论中是用矢量波函数描述,根据其宇称为-1或+1分别称为矢量介子或轴矢介子。根据其内部量子数,已发现的介子可分为非奇异介子(π、ρ、J/ψ等)、奇异介子(K、Q、K*等)、粲-非奇异介子(D)、粲-奇异介子(F)、底-非奇异介子(B)等。.

Π介子和介子 · 介子和重子列表 · 查看更多 »

强相互作用

强相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离第二短的(大约在 10-15 m 范围内,比弱交互作用的範圍大)。另外三种相互作用分别是引力、电磁力及弱相互作用。核子间的核力就是强相互作用。它抵抗了质子之间的强大的电磁力,维持了原子核的稳定。强相互作用也將夸克基本粒子結合成為質子及中子等強子,這也是組成大部份物質的粒子。而且一般質子或中子裡,大部份的質能是以强相互作用場能量的形式存在,夸克只提供了1%的質能。 强相互作用可以在二個地方看到:較大的尺度(約1至3飛米)下,强相互作用將質子及中子結合成為原子的原子核,較小的尺度(約0.8飛米,約為核子的尺寸)下,强相互作用將夸克結合,成為質子、中子或其他強子。强相互作用的作用力非常強,大到束縛一個夸克的能量可以轉換為新的夸克對的質量,强相互作用的這個性質稱為夸克禁閉。 强相互作用是唯一強度不會隨距離減小的作用力,但因為夸克禁閉,夸克會限制和其他夸克在一起,形成的強子之間會有殘留的强相互作用,也稱為核力,核力會隨距離而迅速減少。撞擊原子核釋放的部份束縛能和產生的核力有關,而核力也用在核能及核融合式的核武器中。 强相互作用一般認為是由膠子傳遞的,膠子會在夸克、反夸克及其他膠子之間交換。膠子會帶有色荷,色荷和人眼可見的顏色完全沒有關係,色荷類似電荷,但色荷有六種(紅、綠、藍、反紅、反綠、反藍),因此會形成不同的力,有不同的規則,在量子色動力學(QCD)中有描述,這也是夸克-膠子交互作用的基礎。吳秀蘭等科學家對膠子發現有很大貢獻的科學家,在1995年因此获得了欧洲物理学会髙能和粒子物理奖。 在大爆炸後,電弱時期時,電弱交互作用和强相互作用分離,統一弱交互作用和電磁交互作用的電弱統一理論已經獲得實驗證實。科學家進一步預期有一個大統一理論可以統一電弱交互作用及强相互作用,現今有許多是大統一理論的理論,第一個是哈沃德·乔吉和谢尔登·格拉肖于1974年提出了最早的SU(5)大统一理论,但和實驗不合,其他的理論有SO(10)模型、,但還沒有一個是廣為科學家接受,且有實驗證實的理論,而且許多大統一理論都預言質子衰變,但目前也還沒有實驗支持,大統一理論也還是未解決的物理學問題之一。.

Π介子和强相互作用 · 强相互作用和重子列表 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

Π介子和光速 · 光速和重子列表 · 查看更多 »

粲数

粲数(Charm,符號 C)是一個味量子數,用以表示粒子中粲夸克()與反粲夸克()的數量差異: 傳統上,味量子數的正負號與帶有對應味的夸克電荷同號。因此,有著電荷值 Q + 的粲夸克之粲数為 +1。反粲夸克則有相反的電荷值,而其粲数 C 則為 −1。 粲数在强相互作用與电磁相互作用下守恆,然而在弱相互作用下則不守恆(參見卡比博-小林-益川矩阵)。對於第一階弱衰變,亦即僅有一個夸克衰變的過程下,粲数僅能改變1 ()。由於第一階過程比第二階過程(有著二個夸克衰變)更為常見,這可作為弱衰變的近似。.

Π介子和粲数 · 粲数和重子列表 · 查看更多 »

粒子列表

这是一份粒子物理学的粒子清单,包括已知的和假设的基本粒子,以及由它们合成的复合粒子。.

Π介子和粒子列表 · 粒子列表和重子列表 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

Π介子和电子 · 电子和重子列表 · 查看更多 »

輕子

輕子(Lepton)是一種不参與强相互作用、自旋为1/2的基本粒子。電子是最為人知的一種輕子;大部分化學領域都會涉及到與電子的相互作用,原子不能沒有它,所有化學性質都直接與它有關。輕子又分為兩類:「帶電輕子」與「中性輕子」。帶電輕子包括電子、緲子、陶子,可以與其它粒子組合成複合粒子,例如原子、電子偶素等等。 在所有帶電輕子中,電子的質量最輕,也是宇宙中最穩定、最常見的輕子;質量較重的緲子與陶子會很快地衰變成電子,緲子與陶子必須經過高能量碰撞製成,例如使用粒子加速器或在宇宙線探測實驗。中性輕子包括電中微子、緲中微子、陶中微子;它們很少與任何粒子相互作用,很難被觀測到。 輕子一共有六種風味,形成三個世代。 第一代是電輕子,包括電子()與電中微子 ()。第二代是緲輕子,包括緲子()與緲中微子 ()。第三代是陶輕子,包括陶子()與陶中微子()。 輕子擁有很多內秉性質,包括電荷、自旋、質量等等。輕子與夸克有一點很不相同:輕子不會感受到強作用力。輕子會感受到其它三種基礎力:引力、弱作用力、電磁力。但是,由於中微子的電性是中性,中微子不會感受到電磁力。每一種輕子風味都有其對應的反粒子,稱為「反輕子」。帶電輕子與對應的反輕子唯一不同之處是帶有電荷的正負號相反。根據某些理論,中微子是自己的反粒子,但這論點尚未被證實。 在標準模型裏,輕子扮演重要角色,電子是原子的成分之一,與質子、中子共同組成原子。在某些被合成的奇異原子裏,電子被更換為緲子或陶子。像電子偶素一類的輕子-反輕子粒子也可以被合成。.

Π介子和輕子 · 輕子和重子列表 · 查看更多 »

電子伏特

電子伏特(electron Volt),簡稱電子伏,符号为eV,是能量的單位。代表一個電子(所帶電量為1.6×10-19庫侖)经过1伏特的電位差加速后所獲得的动能。電子伏与SI制的能量单位焦耳(J)的换算关系是.

Π介子和電子伏特 · 重子列表和電子伏特 · 查看更多 »

上面的列表回答下列问题

Π介子和重子列表之间的比较

Π介子有47个关系,而重子列表有62个。由于它们的共同之处13,杰卡德指数为11.93% = 13 / (47 + 62)。

参考

本文介绍Π介子和重子列表之间的关系。要访问该信息提取每篇文章,请访问: